El-Sayed, Salah M.; Al-Dbiban, Asmaa M. A new inversion free iteration for solving the equation \(X + A^{\star} X^{-1} A = Q\). (English) Zbl 1072.65060 J. Comput. Appl. Math. 181, No. 1, 148-156 (2005). A new iterative method for solving the matrix equation \(X + A^\star X^{-1} A = I\), where \(I\) denotes the identity matrix, is proposed: \[ X_0 = Y_0 = I, \;Y_{n+1} = (I-X_n) Y_n + I_n, \;X_{n+1} = I-A^\star Y_{n+1} A. \] It is shown that \(X_n\) converges to the maximal positive definite solution. Based on numerical experiments with two \(3\times 3\) and \(4\times 4\) examples, the authors conclude that the new method is more accurate and requires less floating point operations than some existing methods. Reviewer: Daniel Kressner (Zagreb) Cited in 25 Documents MSC: 65F30 Other matrix algorithms (MSC2010) 15A24 Matrix equations and identities 65F10 Iterative numerical methods for linear systems Keywords:matrix equation; fixed point iteration; convergence; iterative method; maximal positive definite solution; numerical experiments PDF BibTeX XML Cite \textit{S. M. El-Sayed} and \textit{A. M. Al-Dbiban}, J. Comput. Appl. Math. 181, No. 1, 148--156 (2005; Zbl 1072.65060) Full Text: DOI OpenURL References: [1] Anderson, W.N.; Jr.; Morley, T.D.; Trapp, G.E., Positive solution to \(X = A - \mathit{BX}^{- 1} B^\bigstar\), Linear algebra appl., 134, 53-62, (1990) · Zbl 0702.15009 [2] Engwerda, J.C., On the existence of the positive definite solution of the matrix equation \(X + A^T X^{- 1} A = I\), Linear algebra appl., 194, 91-108, (1993) · Zbl 0798.15013 [3] Engwerda, J.C.; Ran, A.C.M.; Rijkeboer, A.L., Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation \(X + A^\bigstar X^{- 1} A = Q\), Linear algebra appl., 186, 255-275, (1993) · Zbl 0778.15008 [4] Guo, C.-H.; Lancaster, P., Iterative solution of two matrix equations, Math. comput., 68, 1589-1603, (1999) · Zbl 0940.65036 [5] Ivanov, Ivan G.; El-Sayed, Salah M., Properties of positive definite solutions of the equation \(X + A^\bigstar X^{- 2} A = I\), Linear algebra appl., 279, 303-316, (1998) · Zbl 0935.65041 [6] Lancaster, P.; Rodman, L., Algebraic Riccati equations, (1995), Oxford Science Publishers · Zbl 0836.15005 [7] El-Sayed, Salah M., Two iterations processes for computing positive definite solutions of the matrix equation \(X - A^\bigstar X^{- n} A = I\), Comput. math. appl., 41, 579-588, (2001) · Zbl 0984.65043 [8] El-Sayed, Salah M., Two sided iteration methods for computing positive definite solutions of a nonlinear matrix equation, J. aust. math. soc. ser. B, 44, 1-8, (2003) · Zbl 1054.65041 [9] El-Sayed, Salah M.; Ran, Andre C.M., On an iteration methods for solving a class of nonlinear matrix equations, SIAM J. matrix anal. appl., 23, 632-645, (2001) · Zbl 1002.65061 [10] El-Sayed, Salah M.; Ramadan, Mohamed A., On the existence of a positive definite solution of the matrix equation \(X - A^\bigstar \sqrt[2^m]{X^{- 1}} A = I\), Internat. J. comput. math., 76, 331-338, (2001) · Zbl 0972.65030 [11] El-Sayed, Salah M.; Mahmoud El-Alem, Some properties for the existence of a positive definite solution of matrix equation \(X + A^\bigstar X^{- 2^m} A = I\), Appl. math. comput., 128, 99-108, (2002) · Zbl 1031.15015 [12] Zhan, X., Computing the extremal positive definite solution of a matrix equation, SIAM J. sci. comput., 17, 1167-1174, (1996) · Zbl 0856.65044 [13] Zhan, X.; Xie, J., On the matrix equation \(X + A^T X^{- 1} A = I\), Linear algebra appl., 247, 337-345, (1996) · Zbl 0863.15005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.