## A new inversion free iteration for solving the equation $$X + A^{\star} X^{-1} A = Q$$.(English)Zbl 1072.65060

A new iterative method for solving the matrix equation $$X + A^\star X^{-1} A = I$$, where $$I$$ denotes the identity matrix, is proposed: $X_0 = Y_0 = I, \;Y_{n+1} = (I-X_n) Y_n + I_n, \;X_{n+1} = I-A^\star Y_{n+1} A.$ It is shown that $$X_n$$ converges to the maximal positive definite solution. Based on numerical experiments with two $$3\times 3$$ and $$4\times 4$$ examples, the authors conclude that the new method is more accurate and requires less floating point operations than some existing methods.

### MSC:

 65F30 Other matrix algorithms (MSC2010) 15A24 Matrix equations and identities 65F10 Iterative numerical methods for linear systems
Full Text:

### References:

  Anderson, W.N.; Jr.; Morley, T.D.; Trapp, G.E., Positive solution to $$X = A - \mathit{BX}^{- 1} B^\bigstar$$, Linear algebra appl., 134, 53-62, (1990) · Zbl 0702.15009  Engwerda, J.C., On the existence of the positive definite solution of the matrix equation $$X + A^T X^{- 1} A = I$$, Linear algebra appl., 194, 91-108, (1993) · Zbl 0798.15013  Engwerda, J.C.; Ran, A.C.M.; Rijkeboer, A.L., Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $$X + A^\bigstar X^{- 1} A = Q$$, Linear algebra appl., 186, 255-275, (1993) · Zbl 0778.15008  Guo, C.-H.; Lancaster, P., Iterative solution of two matrix equations, Math. comput., 68, 1589-1603, (1999) · Zbl 0940.65036  Ivanov, Ivan G.; El-Sayed, Salah M., Properties of positive definite solutions of the equation $$X + A^\bigstar X^{- 2} A = I$$, Linear algebra appl., 279, 303-316, (1998) · Zbl 0935.65041  Lancaster, P.; Rodman, L., Algebraic Riccati equations, (1995), Oxford Science Publishers · Zbl 0836.15005  El-Sayed, Salah M., Two iterations processes for computing positive definite solutions of the matrix equation $$X - A^\bigstar X^{- n} A = I$$, Comput. math. appl., 41, 579-588, (2001) · Zbl 0984.65043  El-Sayed, Salah M., Two sided iteration methods for computing positive definite solutions of a nonlinear matrix equation, J. aust. math. soc. ser. B, 44, 1-8, (2003) · Zbl 1054.65041  El-Sayed, Salah M.; Ran, Andre C.M., On an iteration methods for solving a class of nonlinear matrix equations, SIAM J. matrix anal. appl., 23, 632-645, (2001) · Zbl 1002.65061  El-Sayed, Salah M.; Ramadan, Mohamed A., On the existence of a positive definite solution of the matrix equation $$X - A^\bigstar \sqrt[2^m]{X^{- 1}} A = I$$, Internat. J. comput. math., 76, 331-338, (2001) · Zbl 0972.65030  El-Sayed, Salah M.; Mahmoud El-Alem, Some properties for the existence of a positive definite solution of matrix equation $$X + A^\bigstar X^{- 2^m} A = I$$, Appl. math. comput., 128, 99-108, (2002) · Zbl 1031.15015  Zhan, X., Computing the extremal positive definite solution of a matrix equation, SIAM J. sci. comput., 17, 1167-1174, (1996) · Zbl 0856.65044  Zhan, X.; Xie, J., On the matrix equation $$X + A^T X^{- 1} A = I$$, Linear algebra appl., 247, 337-345, (1996) · Zbl 0863.15005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.