zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Electrical impedance tomography using level set representation and total variational regularization. (English) Zbl 1072.65143
Summary: We propose a numerical scheme for the identification of piecewise constant conductivity coefficient for a problem arising from electrical impedance tomography. The key feature of the scheme is the use of level set method for the representation of interface between domains with different values of coefficients. Numerical tests show that our method can recover sharp interfaces and can tolerate a relatively high level of noise in the observation data. Results concerning the effects of number of measurements, noise level in the data as well as the regularization parameters on the accuracy of the scheme are also given.

MSC:
65N21Inverse problems (BVP of PDE, numerical methods)
35R30Inverse problems for PDE
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
WorldCat.org
Full Text: DOI
References:
[1] Allers, A.; Santosa, F.: Stability and resolution analysis of a linearized problem in electrical impedance tomography. Inverse problems 7, No. 4, 515-533 (1991) · Zbl 0736.35141
[2] H.B. Ameur, M. Burger, B. Hackl, On some geometric inverse problems in linear elasticity, UCLA, Mathematics Department, CAM-Report 03-35, 2003 · Zbl 1086.35117
[3] Brühl, M.: Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. anal. 32, 1327-1341 (2001) · Zbl 0980.35170
[4] Brühl, M.; Hanke, M.: Numerical implementation of two noniterative methods for locating inclusions by impedance tomography. Inverse problems 16, 1029-1042 (2000) · Zbl 0955.35076
[5] Burger, M.: A level set method for inverse problems. Inverse problems 17, 1327-1356 (2001) · Zbl 0985.35106
[6] M. Burger, Levenberg-Marquardt level set methods for inverse obstacle problems, UCLA, Mathematics Department, CAM-Report 03-45, 2003 · Zbl 1059.35162
[7] Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces free boundaries 5, 301-329 (2003) · Zbl 1081.35134
[8] Chan, T. F.; Tai, X. -C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. comput. Phys. 193, 40-66 (2003) · Zbl 1036.65086
[9] Chan, T. F.; Tai, X. -C.: Identification of discontinuous coefficients from elliptic problems using total variation regularization. SIAM J. Sci. comp. 25, 881-904 (2003) · Zbl 1046.65090
[10] Cheney, M.; Isaacson, D.; Newell, J. C.: Electrical impedance tomography. SIAM rev. 41, 85-101 (1999) · Zbl 0927.35130
[11] Cheney, M.; Isaacson, D.; Newell, J.; Goble, J.; Simske, S.: NOSER: an algorithm for solving the inverse conductivity problem. Int. J. Imaging syst. Technol. 2, 66-75 (1990)
[12] Dey, A.; Morrison, H. F.: Resistivity modeling for arbitrarily shaped three dimensional structures. Geophysics 44, 753-780 (1979)
[13] Dobson, D. C.; Santosa, F.: An image-enhancement technique for electrical impedance tomography. Inverse problems 10, No. 2, 317-334 (1994) · Zbl 0805.35149
[14] Dobson, D. C.; Santosa, F.: Resolution and stability analysis of an inverse problem in electrical impedance tomography: dependence on the input current patterns. SIAM J. Appl. math. 54, No. 6, 1542-1560 (1994) · Zbl 0813.35131
[15] Dorn, O.; Miller, E. L.; Rappaport, C. M.: A shape reconstruction method for eletromagnetic tomography using adjoint and level sets. Inverse problems 16, 1119-1156 (2000) · Zbl 0983.35150
[16] Ikehata, M.; Siltanen, S.: Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements. Inverse probl. 16, No. 4, 1043-1052 (2000) · Zbl 0956.35133
[17] Ito, K.; Kunisch, K.; Li, Z.: Level-set function approach to an inverse interface problem. Inverse probl. 17, 1225-1242 (2001) · Zbl 0986.35130
[18] Jarvenpaa, S.; Somersalo, E.: Impedance imaging and electrode models. Proceedings of the conference in oberwolfach, Germany, February 4-10, 1996, 65-74 (1997) · Zbl 0880.65111
[19] Kaipio, J. P.; Kolehmainen, V.; Somersalo, E.; Vauhkonen, M.: Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse probl. 16, No. 5, 1487-1522 (2000) · Zbl 1044.78513
[20] Kolehmainen, V.; Arridge, S. R.; Lionheart, W. R. B.; Vauhkonen, M.; Kaipio, J. P.: Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data. Inverse probl. 15, No. 5, 1375-1391 (1999) · Zbl 0936.35195
[21] Li, Y.; Oldenburg, D. W.: Inversion of 3-d dc resistivity data using an approximate inverse mapping. Geophys. J. Int. 116, No. 3, 557-569 (1994)
[22] J. Lie, M. Lysaker, X.-C. Tai, A variant of the level set method and applications to image segmentation, UCLA CAM Report 03-50, 2003. Available from: <http://www.math.ucla.edu/applied/cam>
[23] Lionheart, W. R. B.: Conformal uniqueness results in anisotropic electrical impedance imaging. Inverse probl. 13, No. 1, 125-134 (1997) · Zbl 0868.35140
[24] Lionheart, W. R. B.: Boundary shape and electrical impedance tomography. Inverse probl. 14, No. 1, 139-147 (1998) · Zbl 0894.35129
[25] W.R.B. Lionheart, EIT reconstruction algorithms: pitfalls, challenges and recent developments, physiological measurement, to appear. Available from: <http://www.arxiv.org/abs/physics/0310151>
[26] P.R. McGillivray, Forward modelling and inversion of DC resistivity and MMR data, Ph.D. Thesis, University of British Columbia, 1992
[27] S.J. Osher, M. Burger, E. Yablonovitch, Inverse problem techniques for the design of photonic crystals, UCLA, Mathematics Department, CAM-Report 03-31, 2003
[28] Osher, S. J.; Fedkiw, R. R.: Level set methods: an overview and some recent results. J. comput. Phys. 169, No. 2, 463-502 (2001) · Zbl 0988.65093
[29] Osher, S. J.; Santosa, F.: Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum. J. comput. Phys. 171, 272-288 (2001) · Zbl 1056.74061
[30] Osher, S. J.; Sethian, J. A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. comput. Phys. 79, 12-49 (1988) · Zbl 0659.65132
[31] L. Rondi, F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional, Control, optimisation, and calculus of variations, to appear. Available from: <http://www.math.umn.edu/%7Esantosa/fs.html> · Zbl 0989.35136
[32] Santosa, F.; Vogelius, M.: A backprojection algorithm for electrical impedance imaging. SIAM J. Appl. math. 50, No. 1, 216-243 (1990) · Zbl 0691.65087
[33] Siltanen, S.; Mueller, J.; Isaacson, D.: An implementation of the reconstruction algorithm of A. Nachman for the 2D inverse conductivity problem. Inverse probl. 16, No. 3, 681-699 (2000) · Zbl 0962.35193
[34] Smith, N. C.; Vozoff, K.: Two dimensional DC resistivity inversion for dipole dipole data. IEEE trans. Geosci. remote sensing 22, 21-28 (1984)
[35] Somersalo, E.; Cheney, M.; Isaacson, D.: Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. math. 52, No. 4, 1023-1040 (1992) · Zbl 0759.35055
[36] B. Song, T.F. Chan, Fast algorithm for level set segmentation, UCLA CAM Report 02-68, 2002
[37] Tamburrino, A.; Rubinacci, G.: A new non-iterative inversion method for electrical resistance tomography. Inverse probl. 18, No. 6, 1809-1829 (2002) · Zbl 1034.35154
[38] Tamburrino, A.; Ventre, S.; Rubinacci, G.: Electrical resistance tomography: complementarity and quadratic models. Inverse probl. 16, No. 5, 1585-1618 (2000) · Zbl 0970.35169
[39] Vese, L. A.; Chan, T. F.: A new multiphase level set framework for image segmentation via the Mumford and shah model. Int. J. Comput. vision 50, No. 3, 271-293 (2002) · Zbl 1012.68782
[40] L. Vese, S. Osher, The level set method links active contours, Mumford-Shah segmentation, and total variation restoration. CAM Report 02-05, UCLA Mathematics Department, 2002
[41] Vogel, C.: Computational methods for inverse problem. (2001)
[42] Ziemer, W. P.: Weakly differentiable functions. (1989) · Zbl 0692.46022