×

zbMATH — the first resource for mathematics

An explicit expression for the penalty parameter of the interior penalty method. (English) Zbl 1072.65149
Summary: We derive an explicit expression for the penalty parameter of the interior penalty method for elliptic problems. The expression yields a coercive bilinear form, and is valid for general meshes comprising of (geometrically nonconforming) simplical elements.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Software:
Gmsh; PETSc
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, D., An interior penalty finite element method with discontinuous elements, SIAM J. numer. anal., 19, 742-760, (1982) · Zbl 0482.65060
[2] Baker, G.A., Finite element methods for elliptic equations using nonconforming elements, Math. comp., 31, 44-59, (1977) · Zbl 0364.65085
[3] Castillo, P., Performance of discontinuous Galerkin methods for elliptic PDES, SIAM J. sci. comput., 24, 524-547, (2002) · Zbl 1021.65054
[4] Feng, X.; Karakashian, O.A., Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. numer. anal., 30, 1343-1365, (2001) · Zbl 1007.65104
[5] C. Geuzaine, J.F. Remacle, Gmsh Reference Manual, Edition 1.12, 2003. Available from: <http://www.geuz.org.org/gmsh/>
[6] Hesthaven, J.S., From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. numer. anal., 35, 655-676, (1998) · Zbl 0933.41004
[7] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc home page, 2001. Available from: <http://www.mcs.anl.gov/petsc>
[8] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Users Manual, ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004
[9] J. Remacle, AOMD home page, 2002. Available from: <http://www.scorec.rpi.edu/AOMD/>
[10] Schötzau, D.; Schwab, C.; Toselli, A., Mixed hp-DGFEM incompressible flows, SIAM J. numer. anal., 40, 2171-2194, (2003) · Zbl 1055.76032
[11] Warburton, T.; Hesthaven, J.S., On the constants in hp-finite element trace inverse inequality, Comput. meth. appl. mech. eng., 192, 2765-2773, (2003) · Zbl 1038.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.