×

zbMATH — the first resource for mathematics

Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. (English) Zbl 1072.74013
Summary: This paper is concerned with a phenomenological model of initially isotropic finite-strain multiplicative elasto-plasticity for polycrystals with grain boundary relaxation [the author, Contin. Mech. Thermodyn. 15, No. 2, 161–195 (2003; Zbl 1035.74015)]. We prove a local in time existence and uniqueness result for the corresponding initial-boundary value problem in the quasistatic rate-dependent case. Use is made of a generalized Korn first inequality [the author, Proc. R. Soc. Edinb., Sect. A, Math. 132, No. 1, 221–243 (2002; Zbl 1143.74311)] taking into account the incompatibility of the plastic deformation \(F_p\). This is a first result concerning classical solutions in geometrically exact nonlinear finite visco-plasticity for polycrystals. Global existence is not proved and cannot be expected due to the natural possibility of material degradation in time.

MSC:
74C20 Large-strain, rate-dependent theories of plasticity
74H20 Existence of solutions of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
74E15 Crystalline structure
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Hans-Dieter Alber, Materials with memory, Lecture Notes in Mathematics, vol. 1682, Springer-Verlag, Berlin, 1998. Initial-boundary value problems for constitutive equations with internal variables. · Zbl 0977.35001
[2] Karl-Heinz Anthony, Die Theorie der nichtmetrischen Spannungen in Kristallen, Arch. Rational Mech. Anal. 40 (1970/1971), 50 – 78 (German, with English summary). · Zbl 0224.73108
[3] A. Bertram, An alternative approach to finite plasticity based on material isomorphisms, Int. J. Plasticity 52 (1998), 353-374. · Zbl 1016.74009
[4] A. Bertram and B. Svendsen, On material objectivity and reduced constitutive equations, Arch. Mech. (Arch. Mech. Stos.) 53 (2001), no. 6, 653 – 675. · Zbl 1050.74004
[5] J. F. Besseling and E. van der Giessen, Mathematical modelling of inelastic deformation, Applied Mathematics and Mathematical Computation, vol. 5, Chapman & Hall, London, 1994. · Zbl 0809.73003
[6] Kaushik Bhattacharya and Robert V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials, Arch. Rational Mech. Anal. 139 (1997), no. 2, 99 – 180. · Zbl 0894.73225
[7] Frederick Bloom, Modern differential geometric techniques in the theory of continuous distributions of dislocations, Lecture Notes in Mathematics, vol. 733, Springer, Berlin, 1979. · Zbl 0416.73001
[8] S.R. Bodner and Y. Partom, Constitutive equations for elastic-viscoplastic strainhardening materials, J. Appl. Mech. 42 (1975), 385-389.
[9] O.T. Bruhns, H. Xiao, and A. Mayers, Some basic issues in traditional eulerian formulations of finite elastoplasticity, Int. J. Plast. 19 (2003), 2007-2026. · Zbl 1098.74540
[10] C. Carstensen and K. Hackl, On microstructure occurring in a model of finite-strain elastoplasticity involving a single slip system, ZAMM (2000). · Zbl 0979.74012
[11] Carsten Carstensen, Klaus Hackl, and Alexander Mielke, Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458 (2002), no. 2018, 299 – 317. · Zbl 1008.74016
[12] J. Casey and P.M. Naghdi, A remark on the use of the decomposition \(F=F_e\cdot F_p\) in plasticity, J. Appl. Mech. 47 (1980), 672-675. · Zbl 0472.73035
[13] P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids 49 (2001), 1539-1568. · Zbl 0989.74013
[14] Krzysztof Chełmiński, On self-controlling models in the theory of nonelastic material behavior of metals, Contin. Mech. Thermodyn. 10 (1998), no. 3, 121 – 133. · Zbl 0911.73023
[15] Krzysztof Chełmiński, On monotone plastic constitutive equations with polynomial growth condition, Math. Methods Appl. Sci. 22 (1999), no. 7, 547 – 562. , https://doi.org/10.1002/(SICI)1099-1476(19990510)22:73.0.CO;2-T · Zbl 0922.35177
[16] Philippe G. Ciarlet, Mathematical elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity. · Zbl 0648.73014
[17] Y.F. Dafalias, The plastic spin concept and a simple illustration of its role in finite plastic transformations, Mechanics of Materials 3 (1984), 223-233.
[18] -, Issues on the constitutive formulation at large elastoplastic deformations, Part I: Kinematics, Acta Mechanica 69 (1987), 119-138. · Zbl 0627.73047
[19] -, Plastic spin: necessity or redundancy?, Int. J. Plasticity 14 (1998), no. 9, 909-931. · Zbl 0947.74008
[20] S. Ebenfeld, Aspekte der Kontinua mit Mikrostruktur, Berichte aus der Mathematik, Shaker Verlag, Aachen, 1998. · Zbl 0916.35125
[21] -, \(L^2\)-regularity theory of linear strongly elliptic Dirichlet systems of order \(2m\) with minimal regularity in the coefficients, Preprint Nr. 2015, TU Darmstadt, (1998).
[22] Stefan Ebenfeld, \?²-regularity theory of linear strongly elliptic Dirichlet systems of order 2\? with minimal regularity in the coefficients, Quart. Appl. Math. 60 (2002), no. 3, 547 – 576. · Zbl 1030.35045
[23] P. Ellsiepen and S. Hartmann, Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations, Int. J. Num. Meth. Engrg. 51 (2001), 679-707. · Zbl 1014.74068
[24] A. E. Green and P. M. Naghdi, A general theory of an elastic-plastic continuum, Arch. Rational Mech. Anal. 18 (1965), 251 – 281; corrigenda, ibid. 19 (1965), 408. · Zbl 0133.17701
[25] Morton E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients, J. Mech. Phys. Solids 48 (2000), no. 5, 989 – 1036. · Zbl 0988.74021
[26] Klaus Hackl, Generalized standard media and variational principles in classical and finite strain elastoplasticity, J. Mech. Phys. Solids 45 (1997), no. 5, 667 – 688. · Zbl 0974.74512
[27] Weimin Han and B. Daya Reddy, Plasticity, Interdisciplinary Applied Mathematics, vol. 9, Springer-Verlag, New York, 1999. Mathematical theory and numerical analysis. · Zbl 0926.74001
[28] P. Haupt, On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behaviour, Int. J. Plasticity 1 (1985), 303-316. · Zbl 0632.73042
[29] Peter Haupt, Continuum mechanics and theory of materials, Advanced Texts in Physics, Springer-Verlag, Berlin, 2000. Translated from the German by Joan A. Kurth. · Zbl 0938.74001
[30] Ioan R. Ionescu and Mircea Sofonea, Functional and numerical methods in viscoplasticity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. · Zbl 0787.73005
[31] L.M. Kachanov, Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1986. · Zbl 0596.73091
[32] Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry. Vol. I, Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955. Kazuo Kondo, Chairman. · Zbl 0068.14803
[33] Memoirs of the unifying study of the basic problems in engineering sciences by means of geometry. Vol. I, Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955. Kazuo Kondo, Chairman. · Zbl 0068.14803
[34] Arnold Krawietz, Materialtheorie, Springer-Verlag, Berlin, 1986 (German). Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. [Mathematical description of phenomenological and thermomechanic behavior]. · Zbl 0593.73001
[35] Ekkehart Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der angewandten Mathematik. Bd. 5, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 (German). · Zbl 0084.40003
[36] -, Dislocation: a new concept in the continuum theory of plasticity, J. Math. Phys. 42 (1962), 27-37. · Zbl 0129.23202
[37] Ekkehart Kröner and Alfred Seeger, Nicht-lineare Elastizitätstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal. 3 (1959), 97 – 119 (German). · Zbl 0085.38601
[38] E.H. Lee, Elastic-plastic deformation at finite strain, J. Appl. Mech. 36 (1969), 1-6. · Zbl 0179.55603
[39] J. Lemaitre and J.L. Chaboche, Mécanique des matériaux solides, Dunod, Paris, 1985.
[40] Massimiliano Lucchesi and Paolo Podio-Guidugli, Materials with elastic range: a theory with a view toward applications. I, Arch. Rational Mech. Anal. 102 (1988), no. 1, 23 – 43. · Zbl 0659.73037
[41] J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, Int. J. Solids Structures 9 (1973), 725-740. · Zbl 0255.73004
[42] Jerrold E. Marsden and Thomas J. R. Hughes, Mathematical foundations of elasticity, Dover Publications, Inc., New York, 1994. Corrected reprint of the 1983 original. · Zbl 0545.73031
[43] Gérard A. Maugin, Material inhomogeneities in elasticity, Applied Mathematics and Mathematical Computation, vol. 3, Chapman & Hall, London, 1993. · Zbl 0797.73001
[44] -, The Thermomechanics of Nonlinear Irreversible Behaviors, Nonlinear Science, no. 27, World Scientific, Singapore, 1999. · Zbl 0945.80001
[45] G.A. Maugin and M. Epstein, Geometrical material structure of elastoplasticity, Int. J. Plasticity 14 (1998), 109-115. · Zbl 0911.73028
[46] A. Mayers, P. Schiebe, and O.T. Bruhns, Some comments on objective rates of symmetric eulerian tensors with application to eulerian strain rates, Acta Mech. 139 (2000), 91-103. · Zbl 0984.74004
[47] C. Miehe, A theory of large-strain isotropic thermoplasticity based on metric transformation tensors, Archive Appl. Mech. 66 (1995), 45-64. · Zbl 0844.73027
[48] A. Mielke, Finite elastoplasticity, Lie groups and geodesics on SL(d), Sonderforschungsbereich 404 Bericht 2000/26, University of Stuttgart, 2000. · Zbl 1146.74309
[49] A. I. Murdoch, Objectivity in classical continuum physics: a rationale for discarding the ’principle of invariance under superposed rigid body motions’ in favour of purely objective considerations, Contin. Mech. Thermodyn. 15 (2003), no. 3, 309 – 320. · Zbl 1068.74515
[50] W. Muschik and L. Restuccia, Changing the observer and moving materials in continuum physics: objectivity and frame-indifference, Technische Mechanik 22 (2002), 152-160.
[51] P. M. Naghdi, A critical review of the state of finite plasticity, Z. Angew. Math. Phys. 41 (1990), no. 3, 315 – 394. · Zbl 0712.73032
[52] A. Needleman, Material rate dependence and mesh sensitivity in localization problems, Comp. Meth. Appl. Mech. Engrg. 67 (1988), 69-85. · Zbl 0618.73054
[53] P. Neff, Formulation of visco-plastic approximations in finite plasticity for a model of small elastic strains, Part I: Modelling, Preprint 2127, TU Darmstadt, 2000.
[54] -, Mathematische Analyse multiplikativer Viskoplastizität, Ph.D. Thesis, TU Darmstadt, Shaker Verlag, ISBN:3-8265-7560-1, Aachen, 2000.
[55] -, Formulation of visco-plastic approximations in finite plasticity for a model of small elastic strains, Part IIa: Local existence and uniqueness results, Preprint 2138, TU Darmstadt, 2001.
[56] Patrizio Neff, On Korn’s first inequality with non-constant coefficients, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 1, 221 – 243. · Zbl 1143.74311
[57] Patrizio Neff, Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation, Contin. Mech. Thermodyn. 15 (2003), no. 2, 161 – 195. · Zbl 1035.74015
[58] Patrizio Neff and Christian Wieners, Comparison of models for finite plasticity: a numerical study, Comput. Vis. Sci. 6 (2003), no. 1, 23 – 35. · Zbl 1129.74303
[59] M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, manuscript, 1993. · Zbl 0964.74012
[60] M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids 47 (1999), no. 2, 397 – 462. · Zbl 0964.74012
[61] M. Ortiz, E. A. Repetto, and L. Stainier, A theory of subgrain dislocation structures, J. Mech. Phys. Solids 48 (2000), no. 10, 2077 – 2114. · Zbl 1001.74007
[62] M. Ortiz and L. Stainier, The variational formulation of viscoplastic constitutive updates, Comput. Methods Appl. Mech. Engrg. 171 (1999), no. 3-4, 419 – 444. · Zbl 0938.74016
[63] Waldemar Pompe, Korn’s first inequality with variable coefficients and its generalization, Comment. Math. Univ. Carolin. 44 (2003), no. 1, 57 – 70. · Zbl 1098.35042
[64] Annie Raoult, Nonpolyconvexity of the stored energy function of a Saint-Venant-Kirchhoff material, Apl. Mat. 31 (1986), no. 6, 417 – 419 (English, with Russian and Czech summaries). · Zbl 0608.73023
[65] M.B. Rubin, Plasticity theory formulated in terms of physically based microstructrural variables- Part I. Theory, Int. J. Solids Structures 31 (1994), no. 19, 2615-2634. · Zbl 0943.74507
[66] C. Sansour and F.G. Kollmann, On theory and numerics of large viscoplastic deformation, Comp. Meth. Appl. Mech. Engrg. 146 (1996), 351-369. · Zbl 0898.73024
[67] Miroslav Šilhavý, On transformation laws for plastic deformations of materials with elastic range, Arch. Rational Mech. Anal. 63 (1976), no. 2, 169 – 182. · Zbl 0357.73033
[68] J. C. Simo, Numerical analysis and simulation of plasticity, Handbook of numerical analysis, Vol. VI, Handb. Numer. Anal., VI, North-Holland, Amsterdam, 1998, pp. 183 – 499. · Zbl 0930.74001
[69] J. C. Simo and T. J. R. Hughes, Computational inelasticity, Interdisciplinary Applied Mathematics, vol. 7, Springer-Verlag, New York, 1998. · Zbl 0934.74003
[70] J.C. Simo and M. Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comp. Meth. Appl. Mech. Engrg. 49 (1985), 221-245. · Zbl 0566.73035
[71] P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations, Int. J. Engrg. Sci. 34 (1996), 1717-1735. · Zbl 0905.73060
[72] B. Svendsen and A. Bertram, On frame-indifference and form-invariance in constitutive theory, Acta Mech. 132 (1999), no. 1-4, 195 – 207. · Zbl 0933.74004
[73] Tullio Valent, Boundary value problems of finite elasticity, Springer Tracts in Natural Philosophy, vol. 31, Springer-Verlag, New York, 1988. Local theorems on existence, uniqueness, and analytic dependence on data. · Zbl 0648.73019
[74] C. Wieners, M. Amman, S. Diebels, and W. Ehlers, Parallel 3-d simulations for porous media models in soil mechanics, Comp. Mech. 29 (2002), 75-87. · Zbl 1066.74040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.