×

zbMATH — the first resource for mathematics

Numerical solutions of the thermistor problem with a ramp electrical conductivity. (English) Zbl 1072.78523
Summary: This paper presents approximate steady-state solutions of a positive temperature coefficient thermistor problem, having a ramp electrical conductivity that is a highly nonlinear function of the temperature, using a standard explicit finite-difference method. It is shown that numerical solutions exhibit the correct physical characteristics of the problem and, they are in good agreement with the exact solution.

MSC:
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
80A20 Heat and mass transfer, heat flow (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cimatti, G., Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions, Q. appl. maths., 47, 117-121, (1989) · Zbl 0694.35137
[2] Cimatti, G.; Prodi, G., Existence results for a non-linear elliptic system modelling a temperature dependent electrical resistor, Ann. mater. pura appl., 162, 33-42, (1992)
[3] Diesselhorst, H., Ber das probleme eines elektrisch erwarmten leiters, Ann. phys., 1, 312-325, (1900) · JFM 31.0808.01
[4] Fowler, A.; Frigaard, I.; Howison, S.D., Temperature surges in thermistors, SIAM J. appl. math., 52, 998-1011, (1992) · Zbl 0800.80001
[5] Howison, S.D.; Rodrigues, J.F.; Shillor, M., Stationary solutions to the thermistor problem, J. math. anal. appl., 174, 573-588, (1993) · Zbl 0787.35033
[6] Wiedmann, J., The thermistor problem, Nonlinear differen. equat. appl., 4, 133-148, (1997) · Zbl 0992.35102
[7] Preis, K.; Biro, O.; Dyczij-Edlinger, R.; Richter, K.R.; Badics, Zs.; Riedler, H.; Stönger, H., Application of FEM to coupled electric, thermal and mechanical problems, IEEE trans. magn., 30, 5, 3316-3319, (1994)
[8] Westbrook, D.R., The thermistor: a problem in heat and current flow, Numer. meth. PDEs., 5, 259-273, (1989) · Zbl 0676.65128
[9] Wood, A.S.; Kutluay, S., A heat balance integral model of the thermistor, Int. J. heat mass transfer, 38, 10, 1831-1840, (1995) · Zbl 0924.73029
[10] Kutluay, S.; Bahadir, A.R.; Ozdes, A., A variety of finite difference methods to the thermistor with a new modified electrical conductivity, Appl. math. comput., 106, 205-213, (1999) · Zbl 1049.80501
[11] Kutluay, S.; Bahadir, A.R.; Ozdes, A., Various methods to the thermistor problem with a bulk electrical conductivity, Int. J. numer. meth. eng., 45, 1-12, (1999) · Zbl 0941.78011
[12] Wood, A.S., Modelling the thermistor, (), 397-400
[13] Howison, S., Complex variables in industrial mathematics, (), 153-166 · Zbl 0709.00507
[14] Smith, G.D., Numerical solution of partial differential equations: finite difference methods, (1987), Clarendon Oxford
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.