zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing spin networks. (English) Zbl 1072.81013
The paper proposes a general setting for the quantum structure of quantum information. The framework is a non-Boolean generalization of the quantum circuit model based on a combinatorial approach to spin networks. After a careful description of computational Hilbert spaces, gates are defined as unitary transformations on these spaces. If the spin network quantum circuit is defined, one deals with semi-classical and SU(2) state sum models on the one hand, and spin network together with topological quantum computation, on the other hand.

MSC:
81P68Quantum computation
81T45Topological field theories
WorldCat.org
Full Text: DOI
References:
[1] Divincenzo, D. P.; Bennett, C.: Nature. 404, 247 (2000)
[2] R. Jozsa, Entanglement and quantum computation. Available from preprint: <quant-ph/9707034>
[3] Kitaev, A.: Ann. phys.. 303, 2 (2003)
[4] Freedman, M. H.; Kitaev, A.; Larsen, M.; Wang, Z.: Bull. am. Math. soc.. 40, 31 (2002)
[5] Jones, J. A.; Vedral, V.; Ekert, A.; Castagnoli, G.: Nature. 403, 869 (2000)
[6] S. Lloyd, Quantum computation with Abelian anyons. Available from preprint: <quant-ph/0004010>
[7] Dennis, E.; Kitaev, A. Yu.; Landahl, A.; Preskill, J.: J. math. Phys.. 43, 4452 (2002)
[8] S.B. Bravyi, A.Yu. Kitaev, Fermionic quantum computation. Available from preprint: <quant-ph/0003137>
[9] Zanardi, P.; Rasetti, M.: Phys. lett. A. 264, 94 (1999)
[10] Pachos, J.; Zanardi, P.; Rasetti, M.: Phys. rev. A. 61, 010305(R) (2000) · Zbl 1079.81514
[11] Marzuoli, A.; Rasetti, M.: Phys. lett. A. 306, 79 (2002)
[12] A.P. Yutsis, I.B. Levinson, V.V. Vanagas, The Mathematical Apparatus of the Theory of Angular Momentum, Israel Program for Sci. Transl. Ltd., Jerusalem, 1962 · Zbl 0111.42704
[13] L.C. Biedenharn, J.D. Louck, G.-C. Rota (Ed.), The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley, Reading, MA, 1981, Topic 9. Physical Interpretation and Asymptotic (Classical) Limits of the Angular Momentum Functions; Topic 12. Coupling of N Angular Momenta: Recoupling Theory
[14] Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K.: Quantum theory of angular momentum. (1988)
[15] Feynman, R. P.: Int. J. Theor. phys.. 21, 467 (1982)
[16] Penrose, R.: Angular momentum: an approach to combinatorial space-time. Quantum theory and beyond, 151 (1971)
[17] S. Garnerone, A. Marzuoli, M. Rasetti, in preparation
[18] Ponzano, G.; Regge, T.: Semiclassical limit of racah coefficients. Spectroscopic and group theoretical methods in physics, 1 (1968)
[19] Biedenharn, L. C.; Louck, J. D.: Angular momentum in quantum physics, theory and applications. Encyclopedia of mathematics and its applications 8 (1981) · Zbl 0474.00023
[20] Regge, T.: Nuovo cimento. 19, 558 (1961)
[21] Kempe, J.; Bacon, D.; Lidar, D. A.; Whaley, K. B.: Phys. rev. A. 63, 042307 (2001)
[22] Fack, V.; Lievens, S.; Van Der Jeugt, J.: Comp. phys. Commun.. 119, 99 (1999)
[23] Fack, V.; Lievens, S.; Van Der Jeugt, J.: Discr. math.. 245, 1 (2002)
[24] Barenco, A.; Bennett, C. H.; Cleve, R.; Divincenzo, D. P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.; Weinfurter, H.: Phys. rev. A. 52, 3457 (1995)
[25] Bernstein, E.; Vazirani, U.: SIAM J. Comput.. 26, 1411 (1997)
[26] Moore, C.; Crutchfield, J. P.: Theor. comput. Sci.. 237, 275 (2000)
[27] Aquilanti, V.; Coletti, C.: Chem. phys. Lett.. 344, 601 (2001)
[28] Askey, R.: Ortogonal polynomials and special functions. (1975) · Zbl 0298.33008
[29] Marzuoli, A.; Rasetti, M.: Int. J. Quantum infor.. 3, 65 (2005) · Zbl 1133.81325
[30] Lloyd, S.: Science. 273, 1073 (1996)
[31] Stanley, R. P.: Enumerative combinatorics. 2 (1999) · Zbl 0945.05006
[32] Kauffman, L. H.: Knots and physics. (1991) · Zbl 0733.57004
[33] Ambjorn, J.; Durhuus, B.; Jonsson, T.: Quantum geometry. (1997)
[34] Regge, T.; Williams, R. M.: J. math. Phys.. 41, 3964 (2000)
[35] Carbone, G.; Carfora, M.; Marzuoli, A.: Nucl. phys. B. 595, 654 (2001)
[36] V. Aquilanti, private communication
[37] Turaev, V. G.; Viro, O. Ya.: Topology. 31, 865 (1992)
[38] Turaev, V. G.: Quantum invariants of knots and 3-manifolds. (1994) · Zbl 0812.57003
[39] Carlip, S.: Quantum gravity in 2+1 dimensions. (1998) · Zbl 0919.53024
[40] Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G.: Phys. rep.. 209, 129 (1991)
[41] Atiyah, M. F.: Publ. math. Inst. hautes etudes sci.. 68, 175 (1989)
[42] Quinn, F.: Lectures on axiomatic topological quantum field theories. IAS/park city math. Series 1 (1995)
[43] Jones, V.: Bull. am. Math. soc.. 12, 103 (1985)
[44] Witten, E.: Commun. math. Phys.. 121, 351 (1989)
[45] Beckman, D.; Gottesman, D.; Kitaev, A. Yu.; Preskill, J.: Phys. rev. D. 65, 065022 (2002)
[46] Jaeger, F.; Vertigen, D.; Welsh, D.: Math. proc. Cambridge philos. Soc.. 108, 35 (1990)
[47] Garey, M. R.; Johnson, D. S.: Computers and intractability. A guide to the theory of NP-completeness. (1979) · Zbl 0411.68039
[48] Di Vincenzo, D. P.: Phys. rev. A. 50, 1015 (1995)
[49] Wilczek, F.; Zee, A.: Phys. rev. Lett.. 52, 2111 (1984)
[50] Jackiw, R.: B.s.dewittr.storarelativity groups and topology, LES houches 1983. Relativity groups and topology, LES houches 1983 (1984)
[51] Nakahara, M.: Geometry, topology and physics. (1990) · Zbl 0764.53001
[52] Preskill, J.: Fault-tolerant quantum computation. Introduction to quantum computation and information (1999) · Zbl 0960.81009
[53] L.H. Kauffman, S.J. Lomonaco, Braiding operators are universal quantum gates. Available from preprint: <quant-ph/0401090>
[54] Fuchs, J.; Schweigert, C.: Symmetries, Lie algebras and representations. (1997) · Zbl 0923.17001
[55] Smorodinskii, Ya.A.; Shelepin, L. A.: Sov. phys. Usp.. 15, 1 (1972)
[56] On-Line Encyclopedia of Integer Sequences, at http://www.research.att.com/njas/sequences/ · Zbl 1044.11108
[57] Buckley, F.; Harari, F.: Distance in graphs. (1990)
[58] Sleator, D. D.; Tarjan, R. E.; Thurston, W. P.: J. am. Math. soc.. 1, 647 (1988)
[59] Li, M.; Tromp, J.; Zhang, L.: J. theor. Biol.. 182, 463 (1996)
[60] Culik, K.; Wood, D.: Inform. process. Lett.. 15, 39 (1982)
[61] Pallo, J. M.: Inform. process. Lett.. 73, 87 (2000)
[62] Pallo, J. M.: Inform. process. Lett.. 87, 173 (2003)
[63] Rogers, R. O.; Dutton, R. D.: Congr. numer.. 120, 103 (1996)
[64] Cleary, S.; Tabak, J.: Inform. process. Lett.. 88, 251 (2003)
[65] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang, in: DIMACS Series in Discr. Math. and Theor. Comp. Science, vol. 55, American Mathematical Society, Providence, RI, 2000, p. 125
[66] Majorana, E.: Nuovo cimento. 9, 43 (1932)