×

Computing spin networks. (English) Zbl 1072.81013

The paper proposes a general setting for the quantum structure of quantum information. The framework is a non-Boolean generalization of the quantum circuit model based on a combinatorial approach to spin networks. After a careful description of computational Hilbert spaces, gates are defined as unitary transformations on these spaces. If the spin network quantum circuit is defined, one deals with semi-classical and SU(2) state sum models on the one hand, and spin network together with topological quantum computation, on the other hand.

MSC:

81P68 Quantum computation
81T45 Topological field theories in quantum mechanics

Software:

OEIS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DiVincenzo, D. P.; Bennett, C., Nature, 404, 247 (2000) · Zbl 1369.81023
[2] R. Jozsa, Entanglement and quantum computation. Available from preprint: <quant-ph/9707034>; R. Jozsa, Entanglement and quantum computation. Available from preprint: <quant-ph/9707034>
[3] Kitaev, A., Ann. Phys., 303, 2 (2003) · Zbl 1012.81006
[4] Freedman, M. H.; Kitaev, A.; Larsen, M.; Wang, Z., Bull. Am. Math. Soc., 40, 31 (2002)
[5] Jones, J. A.; Vedral, V.; Ekert, A.; Castagnoli, G., Nature, 403, 869 (2000)
[6] S. Lloyd, Quantum computation with Abelian anyons. Available from preprint: <quant-ph/0004010>; S. Lloyd, Quantum computation with Abelian anyons. Available from preprint: <quant-ph/0004010>
[7] Dennis, E.; Kitaev, A. Yu.; Landahl, A.; Preskill, J., J. Math. Phys., 43, 4452 (2002) · Zbl 1060.94045
[8] S.B. Bravyi, A.Yu. Kitaev, Fermionic quantum computation. Available from preprint: <quant-ph/0003137>; S.B. Bravyi, A.Yu. Kitaev, Fermionic quantum computation. Available from preprint: <quant-ph/0003137>
[9] Zanardi, P.; Rasetti, M., Phys. Lett. A, 264, 94 (1999) · Zbl 0949.81009
[10] Pachos, J.; Zanardi, P.; Rasetti, M., Phys. Rev. A, 61, 010305(R) (2000)
[11] Marzuoli, A.; Rasetti, M., Phys. Lett. A, 306, 79 (2002) · Zbl 1005.81015
[12] A.P. Yutsis, I.B. Levinson, V.V. Vanagas, The Mathematical Apparatus of the Theory of Angular Momentum, Israel Program for Sci. Transl. Ltd., Jerusalem, 1962; A.P. Yutsis, I.B. Levinson, V.V. Vanagas, The Mathematical Apparatus of the Theory of Angular Momentum, Israel Program for Sci. Transl. Ltd., Jerusalem, 1962 · Zbl 0111.42704
[13] L.C. Biedenharn, J.D. Louck, G.-C. Rota (Ed.), The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley, Reading, MA, 1981, Topic 9. Physical Interpretation and Asymptotic (Classical) Limits of the Angular Momentum Functions; Topic 12. Coupling of \(N\) Angular Momenta: Recoupling Theory; L.C. Biedenharn, J.D. Louck, G.-C. Rota (Ed.), The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of Mathematics and its Applications, vol. 9, Addison-Wesley, Reading, MA, 1981, Topic 9. Physical Interpretation and Asymptotic (Classical) Limits of the Angular Momentum Functions; Topic 12. Coupling of \(N\) Angular Momenta: Recoupling Theory
[14] Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K., Quantum theory of angular momentum (1988), World Scientific: World Scientific Singapore
[15] Feynman, R. P., Int. J. Theor. Phys., 21, 467 (1982)
[16] Penrose, R., Angular momentum: an approach to combinatorial space-time, (Bastin, T., Quantum theory and beyond (1971), Cambridge University Press: Cambridge University Press Cambridge), 151
[17] S. Garnerone, A. Marzuoli, M. Rasetti, in preparation; S. Garnerone, A. Marzuoli, M. Rasetti, in preparation
[18] Ponzano, G.; Regge, T., Semiclassical limit of Racah coefficients, (Bloch, F.; etal., Spectroscopic and group theoretical methods in physics (1968), North-Holland: North-Holland Amsterdam), 1 · Zbl 0201.30804
[19] Biedenharn, L. C.; Louck, J. D., Angular momentum in quantum physics, theory and applications, (Rota, G.-C., Encyclopedia of mathematics and its applications, vol. 8 (1981), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0474.00023
[20] Regge, T., Nuovo Cimento, 19, 558 (1961)
[21] Kempe, J.; Bacon, D.; Lidar, D. A.; Whaley, K. B., Phys. Rev. A, 63, 042307 (2001)
[22] Fack, V.; Lievens, S.; Van der Jeugt, J., Comp. Phys. Commun., 119, 99 (1999)
[23] Fack, V.; Lievens, S.; Van der Jeugt, J., Discr. Math., 245, 1 (2002) · Zbl 0993.05064
[24] Barenco, A.; Bennett, C. H.; Cleve, R.; DiVincenzo, D. P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J.; Weinfurter, H., Phys. Rev. A, 52, 3457 (1995)
[25] Bernstein, E.; Vazirani, U., SIAM J. Comput., 26, 1411 (1997) · Zbl 0895.68042
[26] Moore, C.; Crutchfield, J. P., Theor. Comput. Sci., 237, 275 (2000) · Zbl 0939.68037
[27] Aquilanti, V.; Coletti, C., Chem. Phys. Lett., 344, 601 (2001)
[28] Askey, R., Ortogonal polynomials and special functions (1975), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0298.33008
[29] Marzuoli, A.; Rasetti, M., Int. J. Quantum Infor., 3, 65 (2005) · Zbl 1133.81325
[30] Lloyd, S., Science, 273, 1073 (1996) · Zbl 1226.81059
[31] Stanley, R. P., Enumerative combinatorics, vol. 2 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0928.05001
[32] Kauffman, L. H., Knots and physics (1991), World Scientific: World Scientific Singapore · Zbl 0749.57002
[33] Ambjorn, J.; Durhuus, B.; Jonsson, T., Quantum geometry (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0993.82500
[34] Regge, T.; Williams, R. M., J. Math. Phys., 41, 3964 (2000) · Zbl 0984.83016
[35] Carbone, G.; Carfora, M.; Marzuoli, A., Nucl. Phys. B, 595, 654 (2001) · Zbl 0972.82016
[36] V. Aquilanti, private communication; V. Aquilanti, private communication
[37] Turaev, V. G.; Viro, O. Ya., Topology, 31, 865 (1992) · Zbl 0779.57009
[38] Turaev, V. G., Quantum invariants of knots and 3-manifolds (1994), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 0812.57003
[39] Carlip, S., Quantum gravity in 2+1 dimensions (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0938.83010
[40] Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G., Phys. Rep., 209, 129 (1991)
[41] Atiyah, M. F., Publ. Math. Inst. Hautes Etudes Sci., 68, 175 (1989)
[42] Quinn, F., Lectures on axiomatic topological quantum field theories, (Freed, D. S.; etal., Geometry and quantum field theories. Geometry and quantum field theories, IAS/Park City Math. Series, vol. 1 (1995), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0901.18002
[43] Jones, V., Bull. Am. Math. Soc., 12, 103 (1985) · Zbl 0564.57006
[44] Witten, E., Commun. Math. Phys., 121, 351 (1989) · Zbl 0667.57005
[45] Beckman, D.; Gottesman, D.; Kitaev, A. Yu.; Preskill, J., Phys. Rev. D, 65, 065022 (2002)
[46] Jaeger, F.; Vertigen, D.; Welsh, D., Math. Proc. Cambridge Philos. Soc., 108, 35 (1990) · Zbl 0747.57006
[47] Garey, M. R.; Johnson, D. S., Computers and intractability. A guide to the theory of NP-completeness (1979), W.H. Freeman: W.H. Freeman New York · Zbl 0411.68039
[48] Di Vincenzo, D. P., Phys. Rev. A, 50, 1015 (1995)
[49] Wilczek, F.; Zee, A., Phys. Rev. Lett., 52, 2111 (1984)
[50] Jackiw, R., (DeWitt, B. S.; Stora, R., Relativity groups and topology, Les Houches 1983 (1984), North-Holland: North-Holland Amsterdam), 154 pp
[51] Nakahara, M., Geometry, topology and physics (1990), IOP Publishing · Zbl 0764.53001
[52] Preskill, J., Fault-tolerant quantum computation, (Lo, Hoi-Kwong; Popescu, S.; Spiller, T., Introduction to quantum computation and information (1999), World Scientific: World Scientific Singapore) · Zbl 0957.68045
[53] L.H. Kauffman, S.J. Lomonaco, Braiding operators are universal quantum gates. Available from preprint: <quant-ph/0401090>; L.H. Kauffman, S.J. Lomonaco, Braiding operators are universal quantum gates. Available from preprint: <quant-ph/0401090>
[54] Fuchs, J.; Schweigert, C., Symmetries, Lie algebras and representations (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0923.17001
[55] Smorodinskii, Ya. A.; Shelepin, L. A., Sov. Phys. Usp., 15, 1 (1972)
[56] On-Line Encyclopedia of Integer Sequences, at http://www.research.att.com/njas/sequences/; On-Line Encyclopedia of Integer Sequences, at http://www.research.att.com/njas/sequences/ · Zbl 1274.11001
[57] Buckley, F.; Harari, F., Distance in graphs (1990), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 0688.05017
[58] Sleator, D. D.; Tarjan, R. E.; Thurston, W. P., J. Am. Math. Soc., 1, 647 (1988) · Zbl 0653.51017
[59] Li, M.; Tromp, J.; Zhang, L., J. Theor. Biol., 182, 463 (1996)
[60] Culik, K.; Wood, D., Inform. Process. Lett., 15, 39 (1982) · Zbl 0489.68058
[61] Pallo, J. M., Inform. Process. Lett., 73, 87 (2000) · Zbl 1014.68112
[62] Pallo, J. M., Inform. Process. Lett., 87, 173 (2003) · Zbl 1161.68692
[63] Rogers, R. O.; Dutton, R. D., Congr. Numer., 120, 103 (1996) · Zbl 0901.05041
[64] Cleary, S.; Tabak, J., Inform. Process. Lett., 88, 251 (2003) · Zbl 1178.68174
[65] B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang, in: DIMACS Series in Discr. Math. and Theor. Comp. Science, vol. 55, American Mathematical Society, Providence, RI, 2000, p. 125; B. DasGupta, X. He, T. Jiang, M. Li, J. Tromp, L. Zhang, in: DIMACS Series in Discr. Math. and Theor. Comp. Science, vol. 55, American Mathematical Society, Providence, RI, 2000, p. 125
[66] Majorana, E., Nuovo Cimento, 9, 43 (1932)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.