zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Characterization of solutions of multiobjective optimization problem. (English) Zbl 1072.90041
Weakly efficient points of (nonconvex) vector optimization problems are characterized as global optimal solutions of a constrained scalar optimization problem and vice versa. In this problem a convex, positively homogeneous and Lipschitzian function related to the distance function to the ordering cone is minimized over the set of values of the vector-valued objective function over the feasible set. Proper efficient solutions can then be characterized as global optimal solutions of the same problem with the additional property that this problem is Tykhonov well-posed. This result can then be used to find sufficient conditions for the equivalence of different notions of properly efficient points.

90C30Nonlinear programming
Full Text: DOI
[1] Amahroq T., Taa A,On Lagrange-Kuhnn-Tucker Multipliers for Multiobjective Optimization Problems, Optimization,41 (1997), 159--172. · Zbl 0882.90114 · doi:10.1080/02331939708844332
[2] Ciligot-Traivain M.,On Lagrange-Kuhnn-Tucker Multipliers for Pareto Optimization Problem, Numerical Functional Analysis and Optimization,15 (1994), 689--693. · Zbl 0831.49021 · doi:10.1080/01630569408816587
[3] Clarke F. H.,Optimization and Nonsmooth Analysis, Wiley-Interscience, New York. (1983). · Zbl 0582.49001
[4] Dontchev A. L., Zolezzi T.,Well-Posed Optimization Problems, Lecture Notes in Mathematics, Springer Verlag, Berlin.1543 (1993). · Zbl 0797.49001
[5] Gong X. H.,Connectedness of Efficient Solutions Sets for Set-Valued Map in Normed Spaces, Journal of Optimization Theory and Application,83 (1994), 83--96. · Zbl 0845.90104 · doi:10.1007/BF02191763
[6] Guerraggio A., Molho E., Zaffaroni A.,On The Notion of Proper Efficiency in Vector Optimization, Journal of Optimization Theory and Application,82 (1994), 1--19. · Zbl 0827.90123 · doi:10.1007/BF02191776
[7] Hiriart-Urruty J. B.,Tangent Cones, Generalized Gradients and Mathematical Programming in Banach Spaces, Mathematics of Operations Research,4 (1978), 79--97. · Zbl 0409.90086 · doi:10.1287/moor.4.1.79
[8] Luc D. T.,Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin,319 (1989) · Zbl 0688.90051
[9] Lucchetti R., Revalski, J. (eds.),Recent Developments in Well-posed Variational Problems, Kluwer Academic Publishers, Dordrecht, (1995). · Zbl 0823.00006
[10] Nakayama H., Sawaragi Y., Tanino T.,Theory of Multiobjective Optimization, Academic Press Inc., New York and London, (1985). · Zbl 0566.90053