×

Restricted homological dimensions and Cohen-Macaulayness. (English) Zbl 1073.13501

Summary: The classical homological dimensions – the projective, flat, and injective ones – are usually defined in terms of resolutions and then proved to be computable in terms of vanishing of appropriate derived functors. In this paper, we define restricted homological dimensions in terms of vanishing of the same derived functors but over classes of test modules that are restricted to assure automatic finiteness over commutative Noetherian rings of finite Krull dimension. When the ring is local, we use a mixture of methods from classical commutative algebra and the theory of homological dimensions to show that vanishing of these functors reveals that the underlying ring is a Cohen-Macaulay ring – or at least close to being one.

MSC:

13D05 Homological dimension and commutative rings
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. Apassov, Complexes and Differential Graded Modules, Ph.D. thesis, Lund University, 1999.; D. Apassov, Complexes and Differential Graded Modules, Ph.D. thesis, Lund University, 1999. · Zbl 0935.13006
[2] Auslander, M., Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67, (Mangeney, Marquerite; Peskine, Christian; Szpiro, Lucien, Texte rédigé, d’après des exposés de Maurice Auslander. Texte rédigé, d’après des exposés de Maurice Auslander, École Normale Supérieure de Jeunes Filles (1967), Secrétariat mathématique: Secrétariat mathématique Paris) · Zbl 0157.08301
[3] Auslander, M.; Bridger, M., Stable Module Theory. Stable Module Theory, Memoirs of the American Mathematical Society, 94 (1969), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0204.36402
[4] Auslander, M.; Buchsbaum, D. A., Homological dimension in local rings, Trans. Amer. Math. Soc., 85, 390-405 (1957) · Zbl 0078.02802
[5] Auslander, M.; Buchsbaum, D. A., Homological dimension in Noetherian rings, II, Trans. Amer. Math. Soc., 88, 194-206 (1958) · Zbl 0082.03402
[6] Avramov, L. L.; Foxby, H.-B., Homological dimensions of unbounded complexes, J. Pure Appl. Algebra, 71, 129-155 (1991) · Zbl 0737.16002
[7] Avramov, L. L.; Foxby, H.-B., Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3), 75, 241-270 (1997) · Zbl 0901.13011
[8] Avramov, L. L.; Gasharov, V. N.; Peeva, I. V., Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math., 67-114 (1997) · Zbl 0918.13008
[9] Bass, H., Injective dimension in Noetherian rings, Trans. Amer. Math. Soc., 102, 18-29 (1962) · Zbl 0126.06503
[10] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28 (1963) · Zbl 0112.26604
[11] Chouinard, L. G., On finite weak and injective dimension, Proc. Amer. Math. Soc., 60, 57-60 (1976) · Zbl 0343.13005
[12] Christensen, L. W., Gorenstein Dimensions. Gorenstein Dimensions, Lecture Notes in Mathematics, 1747 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0965.13010
[13] Christensen, L. W., Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc., 353, 1839-1883 (2001) · Zbl 0969.13006
[14] Christensen, L. W., Sequences for complexes, Math. Scand., 89, 161-180 (2001) · Zbl 1021.13014
[15] Enochs, E. E.; Jenda, O. M.G., Gorenstein injective and flat dimensions, Math. Japon., 44, 261-268 (1996) · Zbl 0905.16004
[16] H.-B. Foxby, Hyperhomological algebra and commutative rings, notes in preparation.; H.-B. Foxby, Hyperhomological algebra and commutative rings, notes in preparation.
[17] Foxby, H.-B., \(n\)-Gorenstein rings, Proc. Amer. Math. Soc., 42, 67-72 (1974) · Zbl 0294.13015
[18] Foxby, H.-B., Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand., 40, 5-19 (1977) · Zbl 0356.13004
[19] Foxby, H.-B., Bounded complexes of flat modules, J. Pure Appl. Algebra, 15, 149-172 (1979) · Zbl 0411.13006
[20] Foxby, H.-B., Homological dimensions of complexes of modules, Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (1980), Springer-Verlag: Springer-Verlag Berlin, p. 360-368 · Zbl 0438.13010
[21] Foxby, H.-B., Auslander-Buchsbaum equalities, Proceedings of the Amer. Math. Soc. 904th Meeting, Kent State Univ. (1995), Amer. Math. Soc: Amer. Math. Soc Providence, p. 759-760
[22] A. Frankild, Vanishing of local homology, Copenhagen University, Preprint Series 22, 2001.; A. Frankild, Vanishing of local homology, Copenhagen University, Preprint Series 22, 2001. · Zbl 1020.13003
[23] Gerko, A. A., On homological dimensions, Sb. Math., 192, 1165-1179 (2001) · Zbl 1029.13010
[24] H. Holm, Gorenstein homological dimensions, manuscript, 2002.; H. Holm, Gorenstein homological dimensions, manuscript, 2002.
[25] Iyengar, S., Depth for complexes, and intersection theorems, Math. Z., 230, 545-567 (1999) · Zbl 0927.13015
[26] Matlis, E., Applications of duality, Proc. Amer. Math. Soc., 10, 659-662 (1959) · Zbl 0090.02501
[27] Peskine, C.; Szpiro, L., Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math., 47-119 (1973) · Zbl 0268.13008
[28] Raynaud, M.; Gruson, L., Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., 13, 1-89 (1971) · Zbl 0227.14010
[29] Roberts, P., Le théorème d’intersection, C. R. Acad. Sci. Paris Sér. I Math., 304, 177-180 (1987) · Zbl 0609.13010
[30] Weibel, C. A., An Introduction to Homological Algebra (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0797.18001
[31] Yassemi, S., Width of complexes of modules, Acta Math. Vietnam, 23, 161-169 (1998) · Zbl 0916.13006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.