×

Height pairings for algebraic cycles on Abelian varieties. (English) Zbl 1073.14527

Summary: Beilinson and Bloch have given conditional constructions of height pairings between algebraic cycles on smooth projective varieties over number fields. These pairings generalize the classical Néron-Tate height pairing between divisors and zero-cycles and give conjecturally a description of the behavior of motivic \(L\)-functions near the central point. We give an unconditional construction of height pairings for algebraic cycles on abelian varieties. This improves a previous result [Duke Math. J. 95, No.1, 161–212 (1998; Zbl 0955.14017)] where we have defined height pairings on abelian varieties which have totally degenerate reduction at all places of bad reduction. Our construction is based on the existence of projective regular models for abelian varieties over number fields and on the study of cycles on degenerate fibers in mixed characteristic initiated by Bloch, Gillet, and Soulé.

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G10 Abelian varieties of dimension \(> 1\)
11G50 Heights
14C25 Algebraic cycles
14K15 Arithmetic ground fields for abelian varieties

Citations:

Zbl 0955.14017
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Beilinson A.A. , Height pairings between algebraic cycles , in: Manin Yu.I. (Ed.), K-theory, Arithmetic and Geometry, Moscow 1984-86 , Lect. Notes Math. , 1289 , Springer , Berlin , 1987 , pp. 1 - 25 , and Contemp. Math. 67 (1987) 1-24. Zbl 0651.14002 · Zbl 0651.14002
[2] Bloch S. , Height pairings for algebraic cycles , J. Pure Appl. Algebra 34 ( 1984 ) 119 - 145 . MR 772054 | Zbl 0577.14004 · Zbl 0577.14004
[3] Bloch S. , Gillet H. , Soulé C. , Cycles on degenerate fibers , in: Arithmetic Geometry (Cortona, 1994) , Sympos. Math. XXXVII , Cambridge Univ. Press , Cambridge , 1997 , pp. 45 - 69 . MR 1472491 | Zbl 0955.14007 · Zbl 0955.14007
[4] Deligne P. , La conjecture de Weil II , Publ. Math. I.H.E.S. 52 ( 1981 ) 313 - 428 . Numdam | MR 601520 | Zbl 0456.14014 · Zbl 0456.14014
[5] Faltings G. , Chai C.-L. , Degenerations of Abelian Varieties , Springer , Berlin , 1990 . MR 1083353 | Zbl 0744.14031 · Zbl 0744.14031
[6] Fulton W. , MacPherson R. , Sottile F. , Sturmfels B. , Intersection theory on spherical varieties , J. Algebraic Geometry 4 ( 1995 ) 181 - 193 . MR 1299008 | Zbl 0819.14019 · Zbl 0819.14019
[7] Fulton W. , Intersection Theory , Springer , Berlin , 1984 . MR 732620 | Zbl 0541.14005 · Zbl 0541.14005
[8] Fulton W. , Introduction to Toric Varieties , Annals of Mathematics Studies , 131 , Princeton University Press , Princeton, NJ , 1993 . MR 1234037 | Zbl 0813.14039 · Zbl 0813.14039
[9] Gillet H. , Soulé C. , Intersection theory using Adams operations , Invent. Math. 90 ( 1987 ) 243 - 278 . MR 910201 | Zbl 0632.14009 · Zbl 0632.14009
[10] Gillet H. , Soulé C. , Arithmetic intersection theory , Publ. Math. I.H.E.S. 72 ( 1990 ) 94 - 174 . Numdam | MR 1087394 | Zbl 0741.14012 · Zbl 0741.14012
[11] Künnemann K. , Higher Picard varieties and the height pairing , Amer. J. Math. 118 ( 1996 ) 781 - 797 . MR 1400059 | Zbl 0876.14006 · Zbl 0876.14006
[12] Künnemann K. , Projective regular models for abelian varieties, semi-stable reduction, and the height pairing , Duke Math. J. 95 ( 1998 ) 161 - 212 . Article | MR 1646554 | Zbl 0955.14017 · Zbl 0955.14017
[13] Künnemann K. , The Kähler identity for bigraded Hodge-Lefschetz modules and its application in non-archimedean Arakelov geometry , J. Algebraic Geometry 7 ( 1998 ) 651 - 672 . Zbl 0954.14017 · Zbl 0954.14017
[14] Künnemann K. , Algebraic cycles on toric fibrations over abelian varieties , Math. Z. 232 ( 1999 ) 427 - 435 . MR 1719702 | Zbl 0956.14004 · Zbl 0956.14004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.