Canino, Annamaria; Degiovanni, Marco A variational approach to a class of singular semilinear elliptic equations. (English) Zbl 1073.35092 J. Convex Anal. 11, No. 1, 147-162 (2004). The authors deal with singular semilinear elliptic problems of the form \[ -\Delta u= u^{-\beta}+ g(x,u)\quad \text{in }\Omega,\qquad u> 0\quad \text{in }\Omega,\qquad u= 0\quad \text{on }\partial\Omega,\tag{1} \] where \(\Omega\) is a bounded open subset of \(\mathbb{R}^n\), \(\beta> 0\), and \(g\) satisfies suitable growth conditions. The main goal of the authors is to provide a variational approach to (1). Reviewer: Messoud A. Efendiev (Berlin) Cited in 31 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 49J40 Variational inequalities 35J20 Variational methods for second-order elliptic equations 35J25 Boundary value problems for second-order elliptic equations 47J30 Variational methods involving nonlinear operators Keywords:semilinear elliptic problems; variational approach PDF BibTeX XML Cite \textit{A. Canino} and \textit{M. Degiovanni}, J. Convex Anal. 11, No. 1, 147--162 (2004; Zbl 1073.35092) Full Text: Link