×

Multidimensional viscous shocks. II: The small viscosity limit. (English) Zbl 1073.35162

The authors study the zero-viscosity limit behavior of curved shock waves for multidimensional systems of conservation laws. Under some natural assumptions they prove existence of viscous shocks and justify the small-viscosity limit. The authors apply the new technique of degenerate Kreiss-type symmetrizers, introduced in their previous paper [J. Am. Math. Soc. 18, No. 1, 61–120 (2005; Zbl 1058.35163)].

MSC:

35L67 Shocks and singularities for hyperbolic equations
35L60 First-order nonlinear hyperbolic equations
35K55 Nonlinear parabolic equations
35B35 Stability in context of PDEs
35L65 Hyperbolic conservation laws

Citations:

Zbl 1058.35163
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chazarain, Studies in Mathematics and Its Applications 14, in: Introduction to the theory of linear partial differential equations (1982)
[2] Coppel, Stability and asymptotic behavior of differential equations (1965)
[3] Evans, Graduate Studies in Mathematics 19, in: Partial differential equations (1998) · Zbl 0902.35002
[4] Francheteau, Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Astérisque 268 pp 1– (2000) · Zbl 0996.35001
[5] Freistühler, Spectral stability of small shock waves, Arch Ration Mech Anal 164 (4) pp 287– (2002) · Zbl 1018.35010
[6] Gardner, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm Pure Appl Math 51 (7) pp 797– (1998) · Zbl 0933.35136
[7] Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch Rational Mech Anal 95 (4) pp 325– (1986) · Zbl 0631.35058
[8] Goodman, Stability of viscous scalar shock fronts in several dimensions, Trans Amer Math Soc 311 (2) pp 683– (1989) · Zbl 0693.35112
[9] Goodman, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch Rational Mech Anal 121 (3) pp 235– (1992) · Zbl 0792.35115
[10] Grenier, Stability of one-dimensional boundary layers by using Green’s functions, Comm Pure Appl Math 54 (11) pp 1343– (2001) · Zbl 1026.35015
[11] Guès , O. Métivier , G. Williams , M. Zumbrun , K. 2002 http://www.math.unc.edu/Faculty/williams/
[12] Guès, Curved shocks as viscous limits: a boundary problem approach, Indiana Univ Math J 51 (2) pp 421– (2002) · Zbl 1046.35072
[13] Kreiss, Initial boundary value problems for hyperbolic systems, Comm Pure Appl Math 23 pp 277– (1970) · Zbl 0188.41102
[14] Kreiss, Stability of systems of viscous conservation laws, Comm Pure Appl Math 51 (11) pp 1397– (1998) · Zbl 0935.35013
[15] Kreiss, Pure and Applied Mathematics 136, in: Initial-boundary value problems and the Navier-Stokes equations (1989) · Zbl 0689.35001
[16] Majda, The stability of multidimensional shock fronts, Mem Amer Math Soc 41 (275) (1983) · Zbl 0506.76075
[17] Majda, The existence of multidimensional shock fronts, Mem Amer Math Soc 43 (281) (1983) · Zbl 0517.76068
[18] Métivier , G. Zumbrun , K. 2002 http://www.math.u-bordeaux.fr/metivier/bdrlay.pdf maths.univ-rennes1.fr/metivier/preprints.html
[19] Plaza, An Evans function approach to spectral stability of small-amplitude shock profiles, Discrete Contin Dyn Syst
[20] Rousset , F. 2002 http://www.math.sciences.univ-nantes.fr/edpa/2002/pdf/rous.pdf http://www.umpa.ens-lyon.fr/frousset/
[21] Williams, Highly oscillatory multidimensional shocks, Comm Pure Appl Math 52 (2) pp 129– (1999) · Zbl 0929.35090
[22] Yu, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws, Arch Ration Mech Anal 146 (4) pp 275– (1999) · Zbl 0935.35101
[23] Zumbrun, Progress in Nonlinear Differential Equations and Their Applications 47, in: Advances in the theory of shock waves pp 307– (2001)
[24] Zumbrun, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ Math J 48 (3) pp 937– (1999) · Zbl 0944.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.