×

Can computers discover ideal knots? (English) Zbl 1073.57003

Summary: We discuss the relationship between polygonal knot energies and smooth knot energies, concentrating on ropelength. We show that a smooth knot can be inscribed in a polygonal knot in such a way that the ropelength values are close. For a given knot type, we show that polygonal ropelength minima exist and that the minimal polygonal ropelengths converge to the minimal ropelength of the smooth knot type. A subsequence of these polygons converges to a smooth ropelength minimum. Thus, ropelength minimizations performed on polygonal knots do, in fact, approximate ropelength minimizations for smooth knots.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI Euclid EuDML

References:

[1] DOI: 10.1016/0166-8641(94)00024-W · Zbl 0829.57005
[2] Calvo J. A., PhD thesis, in: Geometric Knot Theory: The Classification of Spatial Polygons with a Small Number of Edges. (1998)
[3] Chern S. S., Studies in Global Geometry and Analysis pp 16– (1967)
[4] DOI: 10.1007/s00222-002-0234-y · Zbl 1036.57001
[5] DOI: 10.1073/pnas.97.8.3795 · Zbl 0997.57008
[6] DOI: 10.1142/S0218216500000402 · Zbl 0999.57011
[7] DOI: 10.1142/S0218216597000431 · Zbl 0889.57005
[8] DOI: 10.1142/9789812796073_0004
[9] DOI: 10.1007/978-1-4612-1712-1_5
[10] DOI: 10.1017/S0305004198003338 · Zbl 0924.57010
[11] DOI: 10.1142/S0218216503002275 · Zbl 1028.57007
[12] Durumeric O., Thickness of Knots 2. (1997)
[13] DOI: 10.1142/S0218216503002354 · Zbl 1028.57008
[14] DOI: 10.1073/pnas.96.9.4769 · Zbl 1057.57500
[15] DOI: 10.1007/s005260100089 · Zbl 1006.49001
[16] Gromov Mikhael, J. Differential Geom. 18 (1) pp 1– (1983)
[17] Hoidn Phoebe, New J. Phys. 4 (20) pp 1– (2002)
[18] DOI: 10.1038/384142a0 · Zbl 1369.57010
[19] Kim Denise, Experiment. Math. 2 (1) pp 1– (1993) · Zbl 0818.57007
[20] DOI: 10.1038/40582
[21] DOI: 10.1007/978-1-4612-1712-1_7
[22] Krötenheerdt Otto, Wiss. Beitr. Martin-Luther-Univ. Halle-Wittenberg Reihe M Math. 7 pp 61– (1976)
[23] DOI: 10.1016/S0166-8641(97)00210-1 · Zbl 0924.57011
[24] DOI: 10.2307/1969467 · Zbl 0037.38904
[25] DOI: 10.1016/S0021-9991(03)00026-3 · Zbl 1072.74533
[26] O’Hara Jun, Topology Hawaii pp 201– (1992)
[27] DOI: 10.1016/0166-8641(92)90023-S · Zbl 0769.57006
[28] DOI: 10.1142/9789812796073_0016
[29] Pierański Piotr, Pro Dialog 5 pp 111– (1997)
[30] DOI: 10.1142/9789812796073_0002
[31] DOI: 10.1007/s101890170011
[32] DOI: 10.1142/9789812796073_0009
[33] DOI: 10.1142/S0218216500000062 · Zbl 0999.57010
[34] DOI: 10.1142/9789812796073_0001
[35] DOI: 10.1038/384122a0
[36] Smutny Jana, Approximation of Space Curves by Biarcs. (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.