×

Volume conjecture and asymptotic expansion of \(q\)-series. (English) Zbl 1073.57006

Summary: We consider the “volume conjecture”, which states that an asymptotic limit of Kashaev’s invariant (or, the colored Jones type invariant) of a knot \({\mathcal K}\) gives the hyperbolic volume of the complement of \({\mathcal K}\). In the first part, we analytically study an asymptotic behavior of the invariant for the torus knot, and propose identities concerning an asymptotic expansion of \(q\)-series which reduces to the invariant with \(q\) being the \(N\)-th root of unity. This is a generalization of an identity recently studied by Zagier. In the second part, we show that the “volume conjecture” is numerically supported for hyperbolic knots and links (knots up to 6-crossings, Whitehead link, and Borromean rings).

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
11B65 Binomial coefficients; factorials; \(q\)-identities
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
57M50 General geometric structures on low-dimensional manifolds

Software:

OEIS

References:

[1] DOI: 10.1215/S0012-7094-01-10831-4 · Zbl 1005.11048 · doi:10.1215/S0012-7094-01-10831-4
[2] Baseilhac S., ”Quantum Hyperbolic State Sum Invariants of 3-Manifolds.” (2001)
[3] DOI: 10.1142/S0217732394000447 · Zbl 0866.17010 · doi:10.1142/S0217732394000447
[4] Goldberg K., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables pp 821– (1972)
[5] DOI: 10.1142/S0217751X0100444X · Zbl 0983.57011 · doi:10.1142/S0217751X0100444X
[6] Hikami K., ”q-Series and L-Function Related to Half-Derivatives of the Andrews–Gordon Identity.” (2002) · Zbl 1114.11039
[7] DOI: 10.1142/S0217732395001526 · Zbl 1022.81574 · doi:10.1142/S0217732395001526
[8] DOI: 10.1023/A:1007364912784 · Zbl 0876.57007 · doi:10.1023/A:1007364912784
[9] Kashaev R. M., Zap. Nauch. Sem. POMI 269 pp 262– (2000)
[10] DOI: 10.1007/BF02096952 · Zbl 0789.57011 · doi:10.1007/BF02096952
[11] DOI: 10.2307/2001784 · Zbl 0743.57003 · doi:10.2307/2001784
[12] DOI: 10.1017/S0305004100072959 · Zbl 0852.57007 · doi:10.1017/S0305004100072959
[13] Murakami H., Art of Low Dimensional Topology VI pp 87– (2000)
[14] DOI: 10.1007/BF02392716 · Zbl 0983.57009 · doi:10.1007/BF02392716
[15] Murakami H., Exp. Math. 11 pp 427– (2002)
[16] DOI: 10.1016/0040-9383(85)90004-7 · Zbl 0589.57015 · doi:10.1016/0040-9383(85)90004-7
[17] PARI/GP, Version 2.0.14 (2000)
[18] DOI: 10.1017/S1446788700019492 · doi:10.1017/S1446788700019492
[19] DOI: 10.1142/S0218216593000064 · Zbl 0787.57006 · doi:10.1142/S0218216593000064
[20] Sloane N. J. A., On-Line Encyclopedia of Integer Sequences. (2002) · Zbl 1044.11108
[21] DOI: 10.1142/S0218216598000073 · Zbl 0892.57003 · doi:10.1142/S0218216598000073
[22] Thurston D., Hyperbolic Volume and the Jones Polynomial (1999)
[23] DOI: 10.1007/BF01393746 · Zbl 0648.57003 · doi:10.1007/BF01393746
[24] Yokota Y., ”On the Volume Conjecture for Hyperbolic Knots.” (2000)
[25] DOI: 10.1007/BF01388583 · Zbl 0594.58012 · doi:10.1007/BF01388583
[26] DOI: 10.1016/S0040-9383(00)00005-7 · Zbl 0989.57009 · doi:10.1016/S0040-9383(00)00005-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.