Fan, Jianqing; Härdle, Wolfgang; Mammen, Enno Direct estimation of low-dimensional components in additive models. (English) Zbl 1073.62527 Ann. Stat. 26, No. 3, 943-971 (1998). Summary: Additive regression models have turned out to be a useful statistical tool in analyses of high-dimensional data sets. Recently, an estimator of additive components has been introduced by Linton and Nielsen which is based on marginal integration. The explicit definition of this estimator makes possible a fast computation and allows an asymptotic distribution theory. In this paper an asymptotic treatment of this estimate is offered for several models. A modification of this procedure is introduced. We consider weighted marginal integration for local linear fits and we show that this estimate has the following advantages.(i) With an appropriate choice of the weight function, the additive components can be efficiently estimated: An additive component can be estimated with the same asymptotic bias and variance as if the other components were known.(ii) Application of local linear fits reduces the design related bias. Cited in 1 ReviewCited in 89 Documents MSC: 62G08 Nonparametric regression and quantile regression 62E20 Asymptotic distribution theory in statistics × Cite Format Result Cite Review PDF Full Text: DOI References: [1] BERNDT, E. R. 1991. The Practice of Econometrics: Classic and Contemporary. Addison-Wesley, Reading, MA. Z. [2] BHATTACHARy A, P. K. and ZHAO, P.-L. 1997. Semiparametric inference in a partial linear model. Ann. Statist. 25 244 262. Z. Z · Zbl 0869.62050 · doi:10.1214/aos/1034276628 [3] BUJA, A., HASTIE, T. J. and TIBSHIRANI, R. J. 1989. Linear smoothers and additive models with. discussion. Ann. Statist. 17 453 510. Z. · Zbl 0689.62029 · doi:10.1214/aos/1176347115 [4] CARROLL, R. J., FAN, J., GIJBELS, I. and WAND, M. P. 1997. Generalized partially linear single-index models. J. Amer. Statist. Assoc. 92 477 489. Z. JSTOR: · Zbl 0890.62053 · doi:10.2307/2965697 [5] CHEN, R., HARDLE, W., LINTON, O. and SEVERANCE-LOSSIN, E. 1996. Estimation and variable \" selection in additive nonparametric regression models. In Statistical Theory and Z. Computational Aspects of Smoothing W. Hardle and M. Schimek, eds.. physika, Ḧeidelberg. Z. [6] FAN, J. 1993. Local linear regression smoothers and their minimax efficiency. Ann. Statist. 21 196 216. Z. · Zbl 0773.62029 · doi:10.1214/aos/1176349022 [7] FAN, J. 1997. Comments on “Poly nomial splines and their tensor product in the extended linear models” by C. J. Stone, M. H. Hansen, C. Kooperberg and Y. U. Troung. Ann. Statist. 25 1425 1432. Z. [8] FAN, J. and GIBELS, I. 1992. Variable bandwidth and local linear regression smoothers. Ann. Statist. 20 2008 2036. Z. · Zbl 0765.62040 · doi:10.1214/aos/1176348900 [9] FAN, J. and GIJBELS, I. 1996. Local Poly nomial Modeling and Its Applications. Chapman and Hall, London. Z. · Zbl 0873.62037 [10] FRANZ, W. 1991. Arbeitsokonomik. Springer, Berlin. \" Z. [11] GASSER, T. and MULLER, H.-G. 1979. Kernel estimation of regression functions. Smoothing \" Techniques for Curve Estimation. Lecture Notes in Math. 757 23 68. Springer, New York. Z. · Zbl 0418.62033 · doi:10.1007/BFb0098489 [12] HARDLE, W. and MAMMEN, E. 1993. Testing parametric versus nonparametric regression. Ann. \" Statist. 21 1926 1947. · Zbl 0795.62036 [13] HARDLE, W., MAMMEN, E. and MULLER, M. 1995. Testing parametric versus semiparametric \" \" modelling in generalized linear models. Technical Report. Z. [14] HARDLE, W. and TSy BAKOV, A. B. 1995. Additive nonparametric regression on principal compo\" nents, J. Nonparametr. Statist. 5 157 184. Z. · Zbl 0857.62040 · doi:10.1080/10485259508832641 [15] HASTIE, T. J. and TIBSHIRANI, R. J. 1990. Generalized Additive Models. Chapman and Hall, London. Z. · Zbl 0747.62061 [16] HENGARTNER, N. W. 1996. Rate optimal estimation of additive regression via the integration method in the presence of many covariates. Unpublished manuscript. Z. [17] LINTON, O. B. 1997. Efficient estimation of additive nonparametric regression models. Biometrika 84 469 473. Z. JSTOR: · Zbl 0882.62038 · doi:10.1093/biomet/84.2.469 [18] LINTON, O. B., MAMMEN, E. and NIELSEN, J. P. 1997. The existence and asy mptotic properties of a backfitting projection algorithm under weak conditions. Preprint. Z. [19] LINTON, O. B. and NIELSEN, J. P. 1995. A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 93 101. Z. JSTOR: · Zbl 0823.62036 · doi:10.1093/biomet/82.1.93 [20] MACK, Y. P. and SILVERMAN, B. W. 1982. Weak and strong uniform consistency of kernel regression estimates. Z. Wahrsch. Verw. Gebiete 61 405 415. Z. · Zbl 0495.62046 · doi:10.1007/BF00539840 [21] OPSOMER, J. D. 1997. On the existence and asy mptotic properties of backfitting estimators. Preprint. Z. [22] OPSOMER, J. D. and RUPPERT, D. 1997. Fitting a bivariate additive model by local poly nomial regression. Ann. Statist. 25 186 211. Z. · Zbl 0869.62026 · doi:10.1214/aos/1034276626 [23] RUPPERT, D. and WAND, M. P. 1994. Multivariate weighted least squares regression. Ann. Statist. 22 1346 1370. Z. · Zbl 0821.62020 · doi:10.1214/aos/1176325632 [24] SPECKMAN, P. 1988. Kernel smoothing in partial linear models. J. Roy. Statist. Soc. Ser. B 50 413 436. Z. JSTOR: · Zbl 0671.62045 [25] STONE, C. J. 1983. Optimal uniform rate of convergence for nonparametric estimators of a density function or its derivatives. In Recent Advances in Statistics: Papers Presented Z in Honor of Herman Chernoff’s Sixtieth Birthday M. H. Rizvi, J. S. Rustagi and D.. Siegmund, eds.. Academic Press, New York. Z. · Zbl 0591.62031 [26] STONE, C. J. 1985. Additive regression and other nonparametric models. Ann. Statist. 13 685 705. Z. · Zbl 0605.62065 · doi:10.1214/aos/1176349548 [27] STONE, C. J. 1986. The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 592 606. Z. TJøSTHEIM, D. and AUESTAD, B. H. 1994. Nonparametric identification of nonlinear time series: projections. J. Amer. Statist. Assoc. 89 1398 1409. Z. [28] TREIMAN, D. J. 1978. Probleme der Begriffsbildung und Operationalisierung in der international vergleichenden Mobilitatsforschung. In Sozialstrukturanalysen mit Umfrage\" Z. daten F. U. Pappi, ed.. Athenaum, Kronberg im Taunus. \" [29] CHAPEL HILL, NORTH CAROLINA 27599-3260 HUMBOLDT-UNIVERSITAT ZU BERLIN \" SPANDAUER STRASSE 1 10178 BERLIN GERMANY This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.