×

Modulation of estimators and confidence sets. (English) Zbl 1073.62538

Summary: An unknown signal plus white noise is observed at \(n\) discrete time points. Within a large convex class of linear estimators of \(\xi\), we choose the estimator \(\hat{\xi}\) that minimizes estimated quadratic risk. By construction, \(\hat{\xi}\) is nonlinear. This estimation is done after orthogonal transformation of the data to a reasonable coordinate system. The procedure adaptively tapers the coefficients of the transformed data. If the class of candidate estimators satisfies a uniform entropy condition, then \(\hat{\xi}\) is asymptotically minimax in Pinsker’s sense over certain ellipsoids in the parameter space and shares one such asymptotic minimax property with the James’ Stein estimator. We describe computational algorithms for \(\hat{\xi}\) and construct confidence sets for the unknown signal. These confidence sets are centered at \(\hat{\xi}\), have correct asymptotic coverage probability and have relatively small risk as set-valued estimators of \(\xi\).

MSC:

62H12 Estimation in multivariate analysis
62B10 Statistical aspects of information-theoretic topics
62F25 Parametric tolerance and confidence regions
Full Text: DOI

References:

[1] Alexander, K. S. (1987). Central limit theorems for stochastic processes under random entropy conditions. Probab. Theory Related Fields 75 351-378. · Zbl 0594.60031 · doi:10.1007/BF00318707
[2] Beran, R. (1994). Stein confidence sets and the bootstrap. Statist. Sinica 5 109-127. Beran, R. (1996a). Confidence sets centered at Cp-estimators. Ann. Inst. Statist. Math. 48 1-15. Beran, R. (1996b). Stein estimation in high dimensions: a retrospective. In Festschrift in Honor of Madan L. Puri (E. Brunner and M. Denker, eds.) 91-110. VSP, Zeist. · Zbl 0828.62079
[3] Casella, G. and Hwang, J. T. (1982). Limit expressions for the risk of James-Stein estimators. Canad. J. Statist. 10 305-309. JSTOR: · Zbl 0512.62044 · doi:10.2307/3556196
[4] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. JSTOR: · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[5] Dudley, R. M. (1987). Universal Donsker classes and metric entropy. Ann. Probab. 15 1306- 1326. · Zbl 0631.60004 · doi:10.1214/aop/1176991978
[6] Engel, J. (1994). A simple wavelet approach to nonparametric regression from recursive partitioning schemes. J. Multivariate Anal. 49 242-254. · Zbl 0795.62034 · doi:10.1006/jmva.1994.1024
[7] Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633. JSTOR: · Zbl 0649.62035 · doi:10.1093/biomet/73.3.625
[8] Golubev, G. K. and Nussbaum, M. (1992). Adaptive spline estimates in a nonparametric regression model. Theory Probab. Appl. 37 521-529. · Zbl 0787.62044 · doi:10.1137/1137102
[9] James, W. and C. Stein (1961). Estimation with quadratic loss. Proc. Fourth Berkeley Sy mp. Math. Statist. Probab. 1 361-380. Univ. California Press, Berkeley. · Zbl 1281.62026
[10] Kneip, A. (1994). Ordered linear smoothers. Ann. Statist. 22 835-866. · Zbl 0815.62022 · doi:10.1214/aos/1176325498
[11] Li, K.-C. (1987). Asy mptotic optimality for Cp, CL, cross-validation and generalized crossvalidation: discrete index set. Ann. Statist. 15 958-976. · Zbl 0653.62037 · doi:10.1214/aos/1176350486
[12] Li, K.-C. (1989). Honest confidence sets for nonparametric regression. Ann. Statist. 17 1001-1008. · Zbl 0681.62047 · doi:10.1214/aos/1176347253
[13] Mallows, C. (1973). Some comments on Cp. Technometrics 15 661-675. · Zbl 0269.62061 · doi:10.2307/1267380
[14] Nussbaum, M. (1996). The Pinsker bound: a review. In Ency clopedia of Statistical Sciences. (S. Kotz, ed.) 3, Wiley, New York.
[15] Pinsker, M. S. (1980). Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16 120-133. · Zbl 0452.94003
[16] Pisier, G. (1983). Some applications of the metric entropy condition to harmonic analysis. Banach Spaces, Harmonic Analy sis, and Probability Theory. Lecture Notes in Math. 995 123- 154. Springer, Berlin. · Zbl 0517.60043
[17] Pollard, D. (1990). Empirical Processes: Theory and Applications. IMS, Hay ward, CA. · Zbl 0741.60001
[18] Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230. · Zbl 0554.62035 · doi:10.1214/aos/1176346788
[19] Robertson, T., Wright, F. T. and Dy kstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, New York. · Zbl 0645.62028
[20] Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 197-206. Univ. California Press, Berkeley. · Zbl 0073.35602
[21] Stein, C. (1966). An approach to the recovery of inter-block information in balanced incomplete block designs. In Research Papers in Statistics. Festschrift for Jerzy Ney man (F. N. David, ed.) 351-366. Wiley, London. · Zbl 0156.40201
[22] Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151. · Zbl 0476.62035 · doi:10.1214/aos/1176345632
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.