×

Generalized projective synchronization of a unified chaotic system. (English) Zbl 1073.65147

Summary: A simple but efficient control technique of the generalized projective synchronization is applied to a unified chaotic system. Numerical simulations show that this method works very well, which can also be applied to other chaotic systems.

MSC:

65P20 Numerical chaos
37M05 Simulation of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pecora, L. M.; Carroll, T. L., Phys Rev Lett, 64, 821 (1990) · Zbl 0938.37019
[2] Kapitaniak, T., Chaos, Solitons & Fractals, 2, 519 (1992) · Zbl 0759.34034
[3] Kapitaniak, T., Phys Rev E, 50, 1642 (1994)
[4] Stefanski, A.; Kapitaniak, T., Chaos, Solitons and Fractals, 40, 175 (2003)
[5] González-Miranda, J. M., Phys Rev E, 53, R5 (1996)
[6] Mainieri, R.; Rehacek, J., Phys Rev Lett, 82, 3042 (1999)
[7] Li, Z.; Xu, D., Phys Lett A, 282, 175 (1990)
[8] Xu, D.; Li, Z., Chaos, 11, 439 (2001)
[9] Xu, D.; Li, Z., Int J Bifurcat Chaos, 12, 1395 (2002)
[10] Xu, D.; Chee, C. Y., Phys Rev E, 66, 046218 (2002)
[11] Xu, D.; Ong, W. L.; Li, Z., Phys Lett A, 305, 167 (2002) · Zbl 1001.37026
[12] Chee, C. Y.; Xu, D., Phys Lett A, 318, 112 (2003) · Zbl 1098.37512
[13] Xu, D.; Chee, C. Y.; Li, C. P., Chaos, Solitons and Fractals, 22, 175 (2004) · Zbl 1060.93535
[14] Afraimovich, V. S.; Verichev, N. N.; Rabinovich, M. I., Izvestiya Vysshikh Uchebnykh Zavedenii Radiofizika, 29, 9, 1050 (1986)
[15] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D.I., Phys Rev E, 51, 980 (1995)
[16] Kocarev, L.; Parlitz, U., Phys Rev Lett, 76, 1816 (1996)
[17] Abarbanel, H. D.I.; Rulkov, N. F.; Sushchik, M. M., Phys Rev E, 53, 4528 (1996)
[18] Yan, J. P.; Li, C. P., Chaos, Solitons and Fractals, 23, 1683 (2005) · Zbl 1068.94535
[19] Li, C. P.; Chen, G., Chaos, 14, 2, 343 (2004) · Zbl 1080.37032
[20] Li, C. P.; Xia, X., Chaos, 14, 3 (2004)
[21] Yan JP, Li CP. On generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system. J Shanghai Univ, accepted; Yan JP, Li CP. On generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system. J Shanghai Univ, accepted
[22] Lu, J.; Wu, X. Q.; Lü, J. H., Phys Lett A, 305, 365 (2002) · Zbl 1005.37012
[23] Lu, J.; Tao, C.; Lü, J. H., Chin Phys Lett, 19, 5, 632 (2002)
[24] Tao, C. H.; Lu, J. A., Acta Phys Sin, 52, 2, 281 (2003) · Zbl 1202.93054
[25] Lorenz, E. N., J Atmos Sci, 20, 130 (1963) · Zbl 1417.37129
[26] Chen, G. R.; Ueta, T., Int J Bifurcat Chaos, 9, 1465 (1999) · Zbl 0962.37013
[27] Li, C. P.; Chen, G., Int J Bifurcat Chaos, 13, 1609 (2003) · Zbl 1074.34045
[28] Li, C. P.; Peng, G. J., Chaos, Solitons & Fractals, 22, 443 (2004) · Zbl 1060.37026
[29] Lü, J. H.; Chen, G.; Chen, D.; Čelikovshý, S., Int J Bifurcat Chaos, 12, 2917 (2002) · Zbl 1043.37026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.