Khazanov, V. B. Methods for solving spectral problems for multiparameter matrix pencils. (English. Russian original) Zbl 1073.65523 J. Math. Sci., New York 127, No. 3, 2033-2050 (2005); translation from Zap. Nauchn. Semin. POMI 296, 139-168 (2003). Summary: Methods for solving the partial eigenproblem for multiparameter regular pencils of real matrices, which allow one to improve given approximations of an eigenvector and the associated point of the spectrum (both finite and infinite) are suggested. Ways of extending the methods to complex matrices, polynomial matrices, and coupled multiparameter problems are indicated. Cited in 2 Documents MSC: 65F15 Numerical computation of eigenvalues and eigenvectors of matrices 15A22 Matrix pencils 15A18 Eigenvalues, singular values, and eigenvectors 15A54 Matrices over function rings in one or more variables Keywords:Newton method; partial eigenproblem; multiparameter regular pencils; eigenvector; complex matrices; polynomial matrices × Cite Format Result Cite Review PDF Full Text: DOI References: [1] V. N. Kublanovskaya, ”Methods and algorithms for solving spectral problems for polynomial and rational matrices,” Zap. Nauchn. Semin. POMI, 238, 3–329 (1997). · Zbl 0928.65064 [2] V. B. Khazanov, ”Methods for solving multiparameter spectral problems,” in: Algorithms 89, Proceedings of the 10th Symposium on Algorithms, Bratislava (1989), pp. 46–48. [3] V. B. Khazanov, ”On spectral properties of multiparameter polynomial matrices,” Zap. Nauchn. Semin. POMI, 229, 284–321 (1995). · Zbl 0899.15005 [4] V. B. Khazanov, ”Generating eigenvectors of a multiparameter polynomial matrix,” Zap. Nauchn. Semin. POMI, 248, 165–186 (1998). · Zbl 0959.15007 [5] V. B. Khazanov, ”On some properties of polynomial bases of subspaces over the field of rational functions in several variables,” Zap. Nauchn. Semin. POMI, 284, 177–191 (2002). · Zbl 1071.15001 [6] E. K. Blum and A. F. Chang, ”Numerical methods for the solution of the double eigenvalue problems,” J. Inst. Math. Appl., 22, 29–42 (1978). · Zbl 0392.65011 · doi:10.1093/imamat/22.1.29 [7] E. K. Blum and A. R. Curtis, ”A convergent gradient method for matrix eigenvector-eigenvalue problems,” Numer. Math., 31, 247–263 (1978). · Zbl 0421.65024 · doi:10.1007/BF01397878 [8] E. K. Blum and G. H. Rodrigue, ”Solution of eigenvalue problems in Hilbert spaces by a gradient method,” J. Comput. System Sci., 2, 220–237 (1974). · Zbl 0327.65052 · doi:10.1016/S0022-0000(74)80056-5 [9] A. Cuit, ”Padé approximants for operators: theory and applications,” Lect. Notes Math., 1065 (1984). [10] G. Peters and J. H. Wilkinson, ”Inverse iteration, ill-conditioned equations and Newton’s method,” SIAM Review, 21, 339–360 (1979). · Zbl 0424.65021 · doi:10.1137/1021052 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.