zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On nonlinear control design for autonomous chaotic systems of integer and fractional orders. (English) Zbl 1073.93027
The authors present via numerical simulations the viability of the “backstepping” method as a design methodology for nonlinear chaos control. Using the “backstepping” method, the authors derive nonlinear controllers for the two chaotic models in this study. The controllers act in such a way as to drive the chaotic output trajectories to the nearest equilibrium points in the basins of attraction. Moreover, the derived controllers show robustness against total system order reduction arising from the use of fractional integrators in the models.

MSC:
93C10Nonlinear control systems
37D45Strange attractors, chaotic dynamics
WorldCat.org
Full Text: DOI
References:
[1] Cuomo, K.; Oppenheim, A.; Strogatz, S.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE trans. Circ. syst. II 40, No. 10 (1993) · Zbl 0884.94008
[2] Huang, X.; Xu, J.: Realization of the chaotic secure communication based on interval synchronization. J. Xi’an jiatong univ. 33, 56-58 (1999)
[3] Bai, E.; Lonngren, K.; Sprott, J.: On the synchronization of a class of electronic circuits that exhibit chaos. Chaos, solitons & fractals 13, 1515-1521 (2002) · Zbl 1005.34041
[4] Al-Assaf Y, Ahmad W. Parameter identification of chaotic systems using waveltes and neural networks, Int J Bifurc Chaos, in press · Zbl 1084.37504
[5] Abed, E. H.; Fu, J. -H: Local feedback stabilization and bifurcation control. I. Hopf bifurcation. Syst. control lett. 7, 11-17 (1986) · Zbl 0587.93049
[6] Wang HO, Abed EH. Control of nonlinear phenomena at the inception of voltage collapse. In: Proceedings of the 1993 American Control Conference, San Fransisco, June 1993, p. 2071--5
[7] Harb, A. M.; Nayfeh, A. H.; Chin, C.; Mili, L.: On the effects of machine saturation on subsynchronous oscillations in power systems. Electr. Mach power syst. J. 28, No. 11 (1999)
[8] Abed, E. H.; Varaiya, P. P.: Nonlinear oscillations in power systems. Int. J. Electr. power energy syst. 6, 37-43 (1989)
[9] Abed EH, Alexander JC, Wang H, Hamdan AH, Lee HC. Dynamic bifurcation in a power system model exhibiting voltage collapse. In: Proceedings of the 1992 IEEE International Symposium on Circuit and Systems, San Diego, CA, 1992
[10] Abed, E. H.; Fu, J. H.: Local feedback stabilization and bifurcation control. I. Hopf bifurcation. Syst. control lett. 7, 11-17 (1986) · Zbl 0587.93049
[11] Abed, E. H.; Fu, J. H.: Local feedback stabilization and bifurcation control. II. stationary bifurcation. Syst. control lett. 8, 467-473 (1987) · Zbl 0626.93058
[12] Nayfeh, A. H.; Balachandran, B.: Applied nonlinear dynamics. (1994) · Zbl 0848.34001
[13] Khalil, H.: Nonlinear systems. (1996) · Zbl 0842.93033
[14] Harb A, Ahmad W. Control of chaotic oscillators using a nonlinear recursive backstepping controller. In: IASTED Conference on Applied Simulations and Modeling, Crete, Greece, June 2002, p. 451--3
[15] Krstic, M.; Kanellakopoulus, I.; Kokotovic, P.: Nonlinear and adaptive control design. (1995)
[16] Zaher A, Zohdy M. Robust control of biped robots. In: Proceedings of ACC, Chicago IL, USA, June 2000, p. 1473--8
[17] Zaher A, Zohdy M, Areed F, Soliman K. Real-time model-reference control of non-linear processes. In: 2nd International Conference on Computers in Industry, Bahrain, November 2000
[18] Sprott, J. C.: Simple chaotic systems and circuits. Am. J. Phys. 68, 758-763 (2000)
[19] Zaher A, Zohdy M, Areed F, Soliman K. Robust model-reference control for a class of non-linear and piece-wise linear systems. In: Proceedings of ACC, Arlington VA, USA, June 2001, p. 4514--9
[20] Charef, A.; Sun, H. H.; Tsao, Y. Y.; Onaral, B.: Fractal system as represented by singularity function. IEEE trans. Autom. control 37, No. 9 (1992) · Zbl 0825.58027
[21] Ahmad, W.; Sprott, C.: Chaos in fractional-order autonomous nonlinear systems. Chaos, solitons & fractals 16, No. 2, 339-351 (2003) · Zbl 1033.37019
[22] Elwakil, A. S.; Kennedy, M. P.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE trans. Circ. syst. 48, No. 3 (2001) · Zbl 0998.94048
[23] Ikhouane, F.; Krstic, M.: Robustness of the tuning functions adaptive backstepping design for linear systems. IEEE trans. Autom. control 43, No. 3, 431-437 (1998) · Zbl 0908.93038