×

Controlling the Lorenz system: combining global and local schemes. (English) Zbl 1073.93537

Summary: The Lorenz equations are one of the best-known and analyzed systems exhibiting chaotic behavior. In this paper, a new control scheme for the Lorenz system combining local and global techniques is introduced. This scheme is based on a feedback law which is only applied in a bounded state space region of control (SSRC). The SSRC is determined by the enclosure of the Lorenz attractor.

MSC:

93C10 Nonlinear systems in control theory
37N35 Dynamical systems in control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alvarez-Gallegos, J., Nonlinear regulation of a Lorenz system by feedback linearization techniques, Dynam. Control, 4, 277-298 (1994) · Zbl 0825.93547
[2] Alvarez-Ramirez, J., Nonlinear feedback for controlling the Lorenz equation, Phys. Rev. E, 50, 2339-2342 (1994)
[3] Fowler, T. B., Applications of stochastic control techniques to chaotic nonlinear systems, IEEE-AC, 34, 201-205 (1989) · Zbl 0677.93072
[4] Fradkov, A. L.; Pogromsky, A. Y., Introduction to control of oscillations and chaos (1998), World Scientific: World Scientific Singapore · Zbl 0945.93003
[5] Haken, H., Analogy between higher instabilities in fluids and lasers, Phys. Lett., 53A, 77-78 (1975)
[6] Hübinger, B.; Doerner, R.; Martinsen, W., Local control of chaotic motion, Z. Phys. B, 90, 103-106 (1993)
[7] Kailath, T., Linear systems (1980), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0458.93025
[8] Kapitaniak, T., Chaos for engineers: theory, applications, and control (2000), Springer: Springer Berlin · Zbl 1005.37001
[9] Leonov, G. A.; Bunin, A. I.; Koksch, N., Attractor localization of the Lorenz system, ZAMM, 67, 649-656 (1987) · Zbl 0653.34040
[10] Knobloch, E., Chaos in the segmented disc dynamo, Phys. Lett., 82A, 439-440 (1981)
[11] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[12] Paskota, M.; Mees, A. I.; Teo, K. L., Geometry of targeting of chaotic systems, Int. J. Bifurc. Chaos, 5, 1167-1173 (1995) · Zbl 0925.93377
[13] Quammar, H. K.; Mossayebi, F., Model-based control of a chaotic system, Int. J. Bifurc. Chaos, 4, 843-851 (1994) · Zbl 0875.93077
[14] Richter, H.; Reinschke, K. J., Local control of chaotic systems: a Lyapunov approach, Int. J. Bifurc. Chaos, 8, 1565-1573 (1998) · Zbl 0941.93523
[15] Romeiras, F. J.; Grebogi, C.; Ott, E.; Dayawansa, W. P., Controlling chaotic dynamical systems, Physica D, 58, 165-192 (1992) · Zbl 1194.37140
[16] Schuster, H. G., Handbook of chaos control (1999), Wiley-VCH: Wiley-VCH Weinheim · Zbl 0997.93500
[17] Sparrow C. The Lorenz equations: bifurcations, chaos & strange attractors, vol. 41. New York: Springer-Series in Appl Math Sci; 1982; Sparrow C. The Lorenz equations: bifurcations, chaos & strange attractors, vol. 41. New York: Springer-Series in Appl Math Sci; 1982 · Zbl 0504.58001
[18] Vincent, T. L.; Yu, J., Control of a chaotic system, Dynam. Control, 1, 35-52 (1991) · Zbl 0747.93071
[19] Wang, H. O.; Abed, E. H., Bifurcation control of chaotic dynamical systems, Automatica, 31, 1213-1226 (1995) · Zbl 0825.93294
[20] Wang, L. X., Stable adaptive fuzzy control of nonlinear systems, IEEE-FS, 1, 146-155 (1993)
[21] Yeap, T. H.; Ahmed, N. U., Feedback control of chaotic systems, Dynam. Control, 4, 97-114 (1994) · Zbl 0792.93041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.