zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiplicity of positive periodic solutions to superlinear repulsive singular equations. (English) Zbl 1074.34048
The authors study the existence and multiplicity of positive periodic solutions of the perturbed Hill equation $$x''(t) + a(t)x(t) = f(t,x(t)),$$ where $f(t,x)$ has a repulsive singularity near $x = 0$ and is superlinear near $x = + \infty.$ This means, respectively, that $\lim_{x \rightarrow 0^{+}} \ f(t,x) = + \infty,$ uniformly in $t$ and that $\lim_{x \rightarrow + \infty} \ f(t,x)/x = + \infty,$ uniformly in $t.$ The proof is based on a nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed-point theorem on compression and expansion of cones.

MSC:
34C25Periodic solutions of ODE
34B16Singular nonlinear boundary value problems for ODE
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H11Degree theory (nonlinear operators)
WorldCat.org
Full Text: DOI
References:
[1] Bevc, V.; Palmer, J. L.; Süsskind, C.: On the design of the transition region of axi-symmetric magnetically focusing beam valves. J. british inst. Radio eng. 18, 696-708 (1958)
[2] Bonheure, D.; De Coster, C.: Forced singular oscillators and the method of lower and upper solutions. Topol methods nonlinear anal. 22, 297-317 (2003) · Zbl 1108.34033
[3] C. De Coster, P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, in: F. Zanolin (Ed.), Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations CISM-ICMS, vol. 371, Springer, New York, 1996, pp. 1 -- 78. · Zbl 0889.34018
[4] Del Pino, M. A.; Manásevich, R. F.: Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity. J. differential equations 103, 260-277 (1993) · Zbl 0781.34032
[5] Del Pino, M. A.; Manásevich, R. F.; Montero, A.: T-periodic solutions for some second order differential equations with singularities. Proc. roy. Soc. Edinburgh 120A, 231-243 (1992) · Zbl 0761.34031
[6] Ding, T.: A boundary value problem for the periodic Brillouin focusing system. Acta sci. Natur. univ. Pekinensis 11, 31-38 (1965)
[7] Dong, Y.: Invariance of homotopy and an extension of a theorem by habets -- metzen on periodic solutions of Duffing equations. Nonlinear anal. 46, 1123-1132 (2001) · Zbl 1005.34011
[8] Erbe, L. H.; Mathsen, R. M.: Positive solutions for singular nonlinear boundary value problems. Nonlinear anal. 46, 979-986 (2001) · Zbl 1007.34020
[9] Erbe, L. H.; Wang, H.: On the existence of positive solutions of ordinary differential equations. Proc. amer. Math. soc. 120, 743-748 (1994) · Zbl 0802.34018
[10] Fonda, A.: Periodic solutions of scalar second order differential equations with a singularity. Mém. classe sci. Acad. roy. Belgique 8-IV, 68-98 (1993) · Zbl 1221.34110
[11] Fonda, A.; Manásevich, R.; Zanolin, F.: Subharmonic solutions for some second order differential equations with singularities. SIAM J. Math. anal. 24, 1294-1311 (1993) · Zbl 0787.34035
[12] Habets, P.; Sanchez, L.: Periodic solution of some Liénard equations with singularities. Proc. amer. Math. soc. 109, 1135-1144 (1990)
[13] Jiang, D. Q.: On the existence of positive solutions to second order periodic BVPs. Acta math. Sinica new ser. 18, 31-35 (1998)
[14] Krasnosel’skii, M. A.: Positive solutions of operator equations. (1964)
[15] Lei, J.; Li, X.; Yan, P.; Zhang, M.: Twist character of the least amplitude periodic solution of the forced pendulem. SIAM J. Math. anal. 35, 844-867 (2003) · Zbl 1189.37064
[16] Mawhin, J.: Topological degree and boundary value problems for nonlinear differential equations. Topological methods for ordinary differential equations, lecture notes in mathematics 1537, 74-142 (1993) · Zbl 0798.34025
[17] O’regan, D.: Existence theory for nonlinear ordinary differential equations. (1997)
[18] I. Rachunková , M. Tvrdý , I. Vrkoc&breve: Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. differential equations 176, 445-469 (2001) · Zbl 1004.34008
[19] Siegel, C. L.; Moser, J.: Lecture on celestial mechanics. (1971) · Zbl 0312.70017
[20] Torres, P. J.: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. differential equations 190, 643-662 (2003) · Zbl 1032.34040
[21] Torres, P. J.; Zhang, M.: A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle. Math. nachr. 251, 101-107 (2003) · Zbl 1024.34030
[22] Yan, P.; Zhang, M.: Higher order nonresonance for differential equations with singularities. Math. methods appl. Sci. 26, 1067-1074 (2003) · Zbl 1031.34040
[23] Zhang, M.: Periodic solutions of Liénard equations with singular forces of repulsive type. J. math. Anal. appl. 203, 254-269 (1996) · Zbl 0863.34039
[24] Zhang, M.: A relationship between the periodic and the Dirichlet BVPs of singular differential equations. Proc. royal soc. Edinburgh 128A, 1099-1114 (1998) · Zbl 0918.34025