Jiang, Daqing; Chu, Jifeng; Zhang, Meirong Multiplicity of positive periodic solutions to superlinear repulsive singular equations. (English) Zbl 1074.34048 J. Differ. Equations 211, No. 2, 282-302 (2005). The authors study the existence and multiplicity of positive periodic solutions of the perturbed Hill equation \[ x''(t) + a(t)x(t) = f(t,x(t)), \] where \(f(t,x)\) has a repulsive singularity near \(x = 0\) and is superlinear near \(x = + \infty.\) This means, respectively, that \(\lim_{x \rightarrow 0^{+}} \;f(t,x) = + \infty,\) uniformly in \(t\) and that \(\lim_{x \rightarrow + \infty} \;f(t,x)/x = + \infty,\) uniformly in \(t.\) The proof is based on a nonlinear alternative of Leray-Schauder type and Krasnoselskii’s fixed-point theorem on compression and expansion of cones. Reviewer: Antonio Cañada Villar (Granada) Cited in 100 Documents MSC: 34C25 Periodic solutions to ordinary differential equations 34B16 Singular nonlinear boundary value problems for ordinary differential equations 47H10 Fixed-point theorems 47H11 Degree theory for nonlinear operators Keywords:periodic solutions; Hill equation; repulsive singular equations; multiplicity; superlinear PDF BibTeX XML Cite \textit{D. Jiang} et al., J. Differ. Equations 211, No. 2, 282--302 (2005; Zbl 1074.34048) Full Text: DOI References: [1] Bevc, V.; Palmer, J. L.; Süsskind, C., On the design of the transition region of axi-symmetric magnetically focusing beam valves, J. British Inst. Radio Eng., 18, 696-708 (1958) [2] Bonheure, D.; De Coster, C., Forced singular oscillators and the method of lower and upper solutions, Topol Methods Nonlinear Anal., 22, 297-317 (2003) · Zbl 1108.34033 [4] del Pino, M. A.; Manásevich, R. F., Infinitely many \(T\)-periodic solutions for a problem arising in nonlinear elasticity, J. Differential Equations, 103, 260-277 (1993) · Zbl 0781.34032 [5] del Pino, M. A.; Manásevich, R. F.; Montero, A., \(T\)-periodic solutions for some second order differential equations with singularities, Proc. Roy. Soc. Edinburgh, 120A, 231-243 (1992) · Zbl 0761.34031 [6] Ding, T., A boundary value problem for the periodic Brillouin focusing system, Acta Sci. Natur. Univ. Pekinensis, 11, 31-38 (1965), (in Chinese) [7] Dong, Y., Invariance of homotopy and an extension of a theorem by Habets-Metzen on periodic solutions of Duffing equations, Nonlinear Anal., 46, 1123-1132 (2001) · Zbl 1005.34011 [8] Erbe, L. H.; Mathsen, R. M., Positive solutions for singular nonlinear boundary value problems, Nonlinear Anal., 46, 979-986 (2001) · Zbl 1007.34020 [9] Erbe, L. H.; Wang, H., On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120, 743-748 (1994) · Zbl 0802.34018 [10] Fonda, A., Periodic solutions of scalar second order differential equations with a singularity, Mém. Classe Sci. Acad. Roy. Belgique, 8-IV, 68-98 (1993) [11] Fonda, A.; Manásevich, R.; Zanolin, F., Subharmonic solutions for some second order differential equations with singularities, SIAM J. Math. Anal., 24, 1294-1311 (1993) · Zbl 0787.34035 [12] Habets, P.; Sanchez, L., Periodic solution of some Liénard equations with singularities, Proc. Amer. Math. Soc., 109, 1135-1144 (1990) [13] Jiang, D. Q., On the existence of positive solutions to second order periodic BVPs, Acta Math. Sinica New Ser., 18, 31-35 (1998) [14] Krasnosel’skii, M. A., Positive Solutions of Operator Equations (1964), Noordhoff: Noordhoff Groningen · Zbl 0121.10604 [15] Lei, J.; Li, X.; Yan, P.; Zhang, M., Twist character of the least amplitude periodic solution of the forced pendulem, SIAM J. Math. Anal., 35, 844-867 (2003) · Zbl 1189.37064 [16] Mawhin, J., Topological degree and boundary value problems for nonlinear differential equations, (Furi, M.; Zecca, P., Topological Methods for Ordinary Differential Equations, Lecture Notes in Mathematics, vol. 1537 (1993), Springer: Springer New York/Berlin), 74-142 · Zbl 0798.34025 [17] O’Regan, D., Existence Theory for Nonlinear Ordinary Differential Equations (1997), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 1077.34505 [18] Rachunková, I.; Tvrdý, M.; Vrkoc˘, I., Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations, 176, 445-469 (2001) · Zbl 1004.34008 [19] Siegel, C. L.; Moser, J., Lecture on Celestial Mechanics (1971), Springer: Springer Berlin · Zbl 0312.70017 [20] Torres, P. J., Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190, 643-662 (2003) · Zbl 1032.34040 [21] Torres, P. J.; Zhang, M., A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr., 251, 101-107 (2003) · Zbl 1024.34030 [22] Yan, P.; Zhang, M., Higher order nonresonance for differential equations with singularities, Math. Methods Appl. Sci., 26, 1067-1074 (2003) · Zbl 1031.34040 [23] Zhang, M., Periodic solutions of Liénard equations with singular forces of repulsive type, J. Math. Anal. Appl., 203, 254-269 (1996) · Zbl 0863.34039 [24] Zhang, M., A relationship between the periodic and the Dirichlet BVPs of singular differential equations, Proc. Royal Soc. Edinburgh, 128A, 1099-1114 (1998) · Zbl 0918.34025 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.