zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical results for a model of diffusion and precipitation of chemical elements in solid matrices. (English) Zbl 1074.35048
The model studied by the author is a system of strongly coupled quasilinear equations of parabolic type of the form $$ u_t+{\cal A}(u)u=f(\cdot,u,\text{grad}\, u)\quad \text{in }\Omega\times (0,\infty)$$ with the boundary condition $$ {\cal B}(u)u=0\quad \text{on }\partial\Omega\times (0,\infty).$$ Existence and uniqueness of the state of local thermodynamic equilibrium are established. Moreover, the author proposes an improved version of the original model for which the general theory of H. Amann can be applied to derive the local existence and smoothness of the corresponding initial value-boundary problem.

MSC:
35K50Systems of parabolic equations, boundary value problems (MSC2000)
35K57Reaction-diffusion equations
WorldCat.org
Full Text: DOI
References:
[1] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces differential operators and nonlinear analysis, 9-126 (1993) · Zbl 0810.35037
[2] H. Amann, Linear and Quasilinear Parabolic Problems, vol. I: Abstract Linear Theory, Birkaüser, Basel, 1995, vol. II, in preparation.
[3] Antontsev, S.; Diaz, J. I.; Shmarev, S.: Energy methods for free boundary problems. Applications to nonlinear partial differential equations and fluid mechanics. (2002)
[4] Bergheau, J. M.; Devaux, J.; Duranton, P.; Fortunier, R.; Larreur, B.; Leblond, J. B.: Numerical simulation of superficial diffusion and precipitation of chemical elements, with application to some nitriding process. Surface treatment VI --- computer methods and experimental measurements for surface treatment effects, 297-306 (2003)
[5] Bongartz, K.; Lupton, D. F.; Schuster, H.: A model to predict carburization profiles in high temperature alloys. Metall. trans. A 11, 1883-1893 (1980)
[6] Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans LES espaces de Hilbert. (1973)
[7] Christ, H. J.; Christl, W.; Sockel, H. G.: Carburization of high-temperature materials. I. mathematical model description of the penetration and simultaneous precipitation of a compound of the diffusing element. Werkst. korros. 37, 385-390 (1986)
[8] Clément, Ph.; Simonett, G.: Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations. J. evol. Equations 1, 39-67 (2001) · Zbl 0988.35099
[9] P. Flauder, D. Huin, J.B. Leblond, Numerical simulation of internal oxidation of steels during annealing treatments, Oxid. Met., 2004, submitted for publication.
[10] R. Fortunier, J.B. Leblond, D. Pont, Recent advances in the numerical simulation of simultaneous diffusion and precipitation of chemical elements in steels, in: E.B. Hawbolt, S. Yue (Eds.), Phase Transformations During the Thermal/Mechanical Processing of Steel. The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 1995, pp. 357 -- 371.
[11] Gesmundo, F.; Niu, Y.: The formation of two layers in the internal oxidation of binary alloys by two oxidants in the absence of external scales. Oxid. met. 51, 129-158 (1999)
[12] Giovangigli, V.: Multicomponent flow modeling. (1999) · Zbl 0956.76003
[13] Huin, D.; Lanteri, V.; Loison, D.; Autesserre, P.; Gaye, H.: Modelling of internal oxidation of several elements. Microscopy of oxidation --- 3, 573-586 (1997)
[14] Kirkaldy, J. S.: On the theory of internal oxidation and sulphation of alloys. Can. metall. Q. 8, 35-38 (1969)
[15] Ladyzenskaya, O. A.; Solonikov, V. A.; Uraltseva, N. N.: Linear and quasilinear equations of parabolic type. (1968)
[16] Leblond, J. B.: Uniqueness and continuity theorems for a system of nonlinear partial differential equations. J. nonlinear anal. Theor. methods appl. 11, 63-69 (1987) · Zbl 0619.35057
[17] Niu, Y.; Gesmundo, F.: An approximate analysis of the external oxidation of ternary alloys forming insoluble oxides. Ihigh oxidant pressures. Oxid. met. 56, 517-536 (2001)
[18] L.A. de Oliveira, On reaction -- diffusion systems, Electron J. Differential Equations (1998) 1 -- 10. · Zbl 0909.35070
[19] Rank, E.; Weinert, U.: A simulation system for diffusive oxidation of silicona two-dimensional finite element approach. IEEE trans. Comput.-aided des. Integrated circuits systems 9, 543-550 (1990)
[20] Wagner, C.: Reaktiontypen bei der oxydation von legierungen. Z. elektrochem. 63, 772 (1959)
[21] Whittle, D. P.; Gesmundo, F.; Bastow, B. D.; Wood, G. C.: The formation of solid solution oxides during internal oxidation. Oxid. met. 16, 159-174 (1981)
[22] Wu, Y. P.: Traveling waves for a class of cross-diffusion systems with small parameters. J. differential equations 123, 1-34 (1995) · Zbl 0838.35052
[23] Yamada, Y.: Global solutions for quasilinear parabolic systems with cross-diffusion effects. Nonlinear anal. Theor. methods appl. 24, 1395-1412 (1995) · Zbl 0863.35052