Colin de Verdière, Yves Singular Lagrangian manifolds and semiclassical analysis. (English) Zbl 1074.53066 Duke Math. J. 116, No. 2, 263-298 (2003). The theory of singularities of Lagrangian manifolds was initiated by V. I. Arnol’d [Funct. Anal. Appl. 15, 235–246 (1982; Zbl 0487.58003)], A. B. Givental’ [Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 33, 55–112 (1988; Zbl 0731.58023)], and others. Lagrangian submanifolds of symplectic manifolds play important role in classical mechanics and microlocal analysis. The author and S. Vu Ngoc [Ann. Sci. Éc. Norm. Supér., IV. Sér. 36, No.1, 1-55 (2003; Zbl 1028.81026)] gave Bohr-Sommerfeld rules for semiclassical completely integrable systems with two degrees of freedom with non-degenerate singularities (Morse-Bott singularities) under the assumption that the energy level of the first Hamiltonian is non-singular. In this paper, the author extends these results to more singular systems and considers classical and semiclassical normal forms for singular Lagrangian manifolds with two-dimensional phase spaces in the real analytic category. The semiclassical normal forms give the analog of the WKB-ansatz for these systems, from which the singular Bohr-Sommerfeld rules can be derived. Furthermore, the author treats the case of the saddle-node bifurcation in greater detail. Reviewer: Andrew Bucki (Edmond) Cited in 2 ReviewsCited in 15 Documents MSC: 53D12 Lagrangian submanifolds; Maslov index 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests 35P20 Asymptotic distributions of eigenvalues in context of PDEs 58J37 Perturbations of PDEs on manifolds; asymptotics Keywords:singular Lagrangian manifold; infinitesimal deformation; normal form; WKB-ansatz Citations:Zbl 1028.81026; Zbl 0487.58003; Zbl 0731.58023 PDF BibTeX XML Cite \textit{Y. Colin de Verdière}, Duke Math. J. 116, No. 2, 263--298 (2003; Zbl 1074.53066) Full Text: DOI OpenURL References: [1] V. I. Arnold, Lagrangian manifolds with singularities, asymptotic rays and the open swallowtail , Funct. Anal. Appl. 15 , no. 4 (1981), 235–246. · Zbl 0487.58003 [2] ——–, Mathematical Methods of Classical Mechanics , 2d ed., Grad. Texts in Math. 60 , Springer, New York, 1989. [3] –. –. –. –., “First steps of local symplectic algebra” in Differential Topology, Infinite-Dimensional Lie Algebras, and Applications: D. B. Fuchs’ 60th Anniversary Collection , Amer. Math. Soc. Transl. Ser. 2 194 , Amer. Math. Soc., Providence, 1999, 1–8. · Zbl 0921.00044 [4] V. I. Arnold, S. M. Goussein-Zadé, and A. N. Varchenko, Singularités des applications différentiables, I , Mir, Moscow, 1986. [5] V. I. Arnold, V. A. Vasilev, V. V. Goryunov, and O. V. Lyashko, Dynamical Systems, VI , Encyclopedia Math. Sci. 6 , Springer, Berlin, 1993. [6] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations , Universitext, Springer, New York, 2000. · Zbl 0942.34004 [7] S. Bates and A. Weinstein, Lectures on the Geometry of Quantization , Berkeley Math. Lect. Notes 8 , Amer. Math. Soc., Providence, 1997. · Zbl 1049.53061 [8] P. J. Braam and J. J. Duistermaat [H. Duistermaat], Normal forms of real symmetric systems with multiplicity , Indag. Math. (N.S.) 4 (1993), 407–421. · Zbl 0802.35176 [9] E. Caliceti, S. Graffi, and M. Maioli, Perturbation of odd anharmonic oscillators , Comm. Math. Phys. 75 (1980), 51–66. · Zbl 0446.47044 [10] E. Caliceti and M. Maioli, Odd anharmonic oscillators and shape resonances , Ann. Inst. H. Poincaré Sect. A (N. S.) 38 (1983), 175–186. · Zbl 0521.47009 [11] Y. Colin de Verdière, M. Lombardi, and J. Pollet, The microlocal Landau-Zener formula , Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), 95–127. · Zbl 0986.81027 [12] Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique, I: Concentration microlocale , Comm. Partial Differential Equations 19 (1994), 1535–1563. · Zbl 0819.35116 [13] –. –. –. –., Équilibre instable en régime semi-classique, II: Conditions de Bohr-Sommerfeld , Ann. Inst. H. Poincaré Phys. Théor. 61 (1994), 347–367. [14] –. –. –. –., Singular Bohr-Sommerfeld rules , Comm. Math. Phys. 205 (1999), 459–500. · Zbl 1157.81310 [15] Y. Colin de Verdière and San Vũ Ng\?c, Singular Bohr-Sommerfeld rules for 2D integrable systems , to appear in Ann. Sci. École Norm. Sup. (4). · Zbl 1028.81026 [16] Y. Colin de Verdière and J. Vey, Le lemme de Morse isochore , Topology 18 (1979), 283–293. · Zbl 0441.58003 [17] E. Delabaere, H. Dillinger, and F. Pham, Résurgence de Voros et périodes des courbes hyperelliptiques , Ann. Institut Fourier (Grenoble) 43 (1993), 163–199. · Zbl 0766.34032 [18] –. –. –. –., Exact semiclassical expansions for one-dimensional quantum oscillators , J. Math. Phys. 38 (1997), 6126–6184. · Zbl 0896.34051 [19] E. Delabaere and F. Pham, Unfolding the quartic oscillator , Ann. Physics 261 (1997), 180–218. · Zbl 0977.34052 [20] E. Delabaere and D. T. Trinh, Spectral analysis of the complex cubic oscillator , J. Phys. A 33 (2000), 8771–8796. · Zbl 1044.81555 [21] R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation , Academic Press, London, 1973. · Zbl 0279.41030 [22] J. J. Duistermaat [H. Duistermaat], Fourier Integral Operators , Progr. Math. 130 , Birkhäuser, Boston, 1996. [23] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals: Elliptic case , Comment. Math. Helv. 65 (1990), 4–35. · Zbl 0702.58024 [24] A. T. Fomenko, “Topological classification of all integrable Hamiltonian differential equations of general type with two degrees of freedom” in The Geometry of Hamiltonian Systems (Berkeley, 1989) , Math. Sci. Res. Inst. Publ. 22 , Springer, New York, 1991, 131–339. · Zbl 0753.58014 [25] A. B. Givental’, Singular Lagrangian manifolds and their Lagrangian maps , J. Soviet Math. 52 (1990), 3246–3278. · Zbl 0900.58013 [26] L. Hörmander, Fourier integral operators, I , Acta Math. 127 (1971), 79–183. · Zbl 0212.46601 [27] ——–, The Analysis of Linear Partial Differential Operators, III: Pseudodifferential Operators , Grundlehren Math. Wiss. 274 , Springer, Berlin, 1985. · Zbl 0601.35001 [28] ——–, The Analysis of Linear Partial Differential Operators, IV: Fourier Integral Operators , Grundlehren Math. Wiss. 275 , Springer, Berlin, 1985. · Zbl 0612.35001 [29] B. Malgrange, Intégrales asymptotiques et monodromie , Ann. Sci. École Norm. Sup. (4) 7 (1974), 405–430. · Zbl 0305.32008 [30] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques , with appendices by V. I. Arnold and V. S. Busalaev, Dunod, Paris, 1972. [31] J. Milnor, Singular Points of Complex Hypersurfaces , Ann. of Math. Stud. 61 , Princeton Univ. Press, Princeton, 1968. · Zbl 0184.48405 [32] Nguyen Hu’u Du’c and F. Pham, Germes de configurations legendriennes stables et fonctions d’Airy-Weber généralisées , Ann. Inst. Fourier (Grenoble) 41 (1991), 905–936. · Zbl 0741.58048 [33] Nguyen Tien Zung [Zung, Nguyen Tien], A note on degenerate corank-one singularities of integrable Hamiltonian systems , Comment. Math. Helv. 75 (2000), 271–283. · Zbl 0961.37019 [34] F. Pham, “Multiple turning points in exact WKB analysis (variations on a theme of Stokes)” in Toward the Exact WKB Analysis of Differential Equations, Linear or Non-Linear (Kyoto, 1998) , Kyoto Univ. Press, Kyoto, 2000, 71–85. · Zbl 1017.34091 [35] J.-P. Ramis, Séries divergentes et théories asymptotiques , Bull. Soc. Math. France 121 (1993), Panor. Synth., supplement. [36] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen , Invent. Math. 14 (1971), 123–142. · Zbl 0224.32011 [37] San Vũ Ng\?c [Vũ Ng\?c, San], Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type , Comm. Pure Appl. Math. 53 (2000), 143–217. · Zbl 1027.81012 [38] –. –. –. –., Formes normales semi-classiques des systèmes complètement intégrables au voisinage d’un point critique de l’application moment , Asymptot. Anal. 24 (2000), 319–342. · Zbl 0990.58018 [39] R. Schoen and J. Wolfson, Minimizing area among Lagrangian surfaces: the mapping problem , J. Differential Geom. 58 (2001), 1–86. \CMP1 895 348 · Zbl 1052.53056 [40] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation , Transl. Math. Momogr. 82 , Amer. Math. Soc., Providence, 1990. · Zbl 1145.34378 [41] D. van Straten and C. Sevenheck, Deformation of singular Lagrangian subvarieties , · Zbl 1051.14006 [42] A. Voros, The return of the quartic oscillator: The complex WKB method , Ann. Inst. H. Poincaré Sect. A (N. S.) 39 (1983), 211–338. · Zbl 0526.34046 [43] –. –. –. –., Exact resolution method for general 1D polynomial Schrödinger equation , J. Phys. A 32 (1999), 5993–6007. · Zbl 0967.81013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.