×

On properties of the second moment of solutions of stochastic differential functional equations with varying coefficients. (Ukrainian, English) Zbl 1074.60070

Teor. Jmovirn. Mat. Stat. 70, 157-163 (2004); translation in Theory Probab. Math. Stat. 70, 177-184 (2005).
The authors prove a theorem on the mean square stability of solutions of the stochastic differential functional equations with Poisson switching \[ dx(t) = a\left( {t,x_{t}} \right)dt + b\left( {t,x_{t}} \right)dw\left( {t} \right) + \int\limits_{\mathbb R} g(t,x_{t},u)\bar\nu(dt,du),\;x(t)=\varphi(t),\;t\in(-\infty,0], \] where \(x_{t}=\{x(t+\theta), -\infty<\theta\leq0\}\), \(w(t)\) is a standard Wiener process, \(\bar\nu(t,A)\) is a centered Poisson measure independent of \(w(t)\).

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60F15 Strong limit theorems
60G42 Martingales with discrete parameter
62J05 Linear regression; mixed models
PDFBibTeX XMLCite