×

Conformal field theories associated to regular chiral vertex operator algebras. I: Theories over the projective line. (English) Zbl 1074.81065

Chiral vertex operator algebra is the quartet \((V,J,T,|0\rangle)\) satisfying the conditions: \(V=\oplus_{\Delta=0\sim N}V_\Delta\) is a \(N\)-graded vector space such that \(\dim V_0=1\) with a basis \(|0 \rangle\) and \(\dim V_\Delta<\infty\). \(T \in V_2\). \(J_n:V\to\text{End}_{-n}V=\{\varphi|\varphi(V_\Delta)\subseteq V_{\Delta-n}\}\) is linear. \(T(n)=J_n(T)\), \(T(0)v=\Delta v\), and \(J_0(|0\rangle) =\text{Id}_v\) give rise to a representation of the Virasolo algebra on \(V\). The authors construct conformal field theories over the projective line \({\mathfrak P}^1 ={\mathfrak C}\cup\{\infty\}\). Let \(A=\{0,1,\dots,N,\infty\}\). \(W_A =(W_a)_{a\in A}\) is the set of distinct points in \({\mathfrak P}^1\) with \(w_\infty=\infty\), \(X=X_A\) is the set of \(W_A\)’s in \(({\mathfrak P}^1)^{N +2}\), and \(Z=Z_A=\{W_A\in X_A|W_0=0, W_1=1\}\). \(M_A=\oplus_{a \in A}M_a\) by \(V\)-modules \(M_a\), \({\mathcal O}_z\): sheaf of germs of holomorphic functions on \(Z\), and \(g(V)\): current Lie algebra. Sheaves of covacua over \(Z\): \({\mathcal V}_z(M_A)={\mathcal O}_z \otimes M_A/ g_z^{\text{out}} (V) ({\mathcal O}_z\otimes M_A)\). Next \(|A|\), \(|B|\geq 3\), \(\overline A=A-\{0_A\}\), \(\overline B=B-\{\infty_B\}\), and \(C= \overline A\cup \overline B\). \(0_A,1_A, \infty_A\); \(0_B,1_B,\infty_B\in B\); \(0_B,1_A,\infty_A\in C\): fixed points. They prove the theorem: \({\mathcal V}_D(M_c)\cong\oplus_{i=0\sim r}({\mathcal V}_D^A (M_{\overline A}\otimes L_i)\otimes{\mathcal V}_D^B(L^+_i\otimes M_{\overline B}))\). \({\mathcal V}_D(M_c)\) are defined by using the trivial \({\mathfrak P}^1\)-bundle \(D\times {\mathfrak P}^1\to D\) and cross sections: \(S_a:(W_A,W_B)\to (W_A,W_B,W_a)\), \(S_b:(W_A,W_B) \to(W_A,W_B,W_b)\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B69 Vertex operators; vertex operator algebras and related structures
17B81 Applications of Lie (super)algebras to physics, etc.
32K07 Formal and graded complex spaces
76R10 Free convection
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)

References:

[1] T. Abe, G. Buhl, and C. Dong, Rationality, regularity, and \(C_2\) co-finiteness , Trans. Amer. Math. Soc. 356 (2004), 3391–3402. · Zbl 1070.17011 · doi:10.1090/S0002-9947-03-03413-5
[2] T. Abe and K. Nagatomo, Finiteness of conformal blocks over compact Riemann surfaces , Osaka J. Math. 40 (2003), 375–391. · Zbl 1052.17013
[3] –. –. –. –., “Finiteness of conformal blocks over the projective line” in Vertex Operator Algebras in Mathematics and Physics (Toronto, 2000) , Fields Inst. Commun. 39 , Amer. Math. Soc., Providence, 2003, 1–12. · Zbl 1084.17011
[4] B. Bakalov and A. Kirillov Jr., Lectures on Tensor Categories and Modular Functors , Univ. Lecture Ser. 21 , Amer. Math. Soc., Providence, 2001. · Zbl 0965.18002
[5] A. Beilinson and V. Drinfeld, Chiral Algebras , Amer. Math. Soc. Colloq. Publ. 51 , Amer. Math. Soc., Providence, 2004. · Zbl 1138.17300
[6] A. Beilinson, B. Feigin, and B. Mazur, Introduction to algebraic field theory on curves , preprint, 1991.
[7] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetries in two-dimensional quantum field theory , Nuclear Phys. B 241 (1984), 333–380. · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[8] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster , Proc. Nat. Acad. Sci. USA 83 (1986), 3068–3071. JSTOR: · Zbl 0613.17012 · doi:10.1073/pnas.83.10.3068
[9] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic \(D\)-Modules , Prospect. Math. 2 , Academic Press, Boston, 1987.
[10] D. Brungs and W. Nahm, The associative algebras of conformal field theory , Lett. Math. Phys. 47 (1999), 379–383. · Zbl 1053.81552 · doi:10.1023/A:1007525300192
[11] G. Buhl, A spanning set for VOA modules , J. Algebra 254 (2002), 125–151. · Zbl 1037.17032 · doi:10.1016/S0021-8693(02)00056-X
[12] B. L. Feĭgin and D. B. Fuchs, “Verma modules over the Virasoro algebra” in Topology (Leningrad, 1982) , Lecture Notes in Math. 1060 , Springer, Berlin, 1984, 230–245. · Zbl 0549.17010
[13] E. Frenkel, Vertex algebras and algebraic curves , Astérisque 276 (2000), 299–339., Séminaire Bourbaki 1999/2000, no. 875. · Zbl 0997.17015
[14] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves , Math. Surveys Monogr. 88 , Amer. Math. Soc., Providence, 2001. · Zbl 0981.17022
[15] I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules , Mem. Amer. Math. Soc. 104 (1993), no. 494. · Zbl 0789.17022
[16] I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster , Pure Appl. Math. 134 , Academic Press, Boston, 1988. · Zbl 0674.17001
[17] I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras , Duke Math. J. 66 (1992), 123–168. · Zbl 0848.17032 · doi:10.1215/S0012-7094-92-06604-X
[18] M. R. Gaberdiel and A. Neitzke, Rationality, quasirationality and finite W-algebras , Comm. Math. Phys. 238 (2003), 305–331. · Zbl 1042.17025 · doi:10.1007/s00220-003-0845-1
[19] D. Gaitsgory, “Notes on \(2\)D conformal field theory and string theory” in Quantum Fields and String: A Course for Mathematicians, Vol. 2 (Princeton, 1996/1997) , Amer. Math. Soc., Providence, 1999, 1017–1089. · Zbl 1170.81429
[20] Y.-Z. Huang, Differential equations and intertwining operators , · Zbl 1070.17012 · doi:10.1142/S0219199705001799
[21] V. G. Kac, Infinite-Dimensional Lie Algebras , 3rd ed., Cambridge Univ. Press, Cambridge, 1990. · Zbl 0716.17022
[22] M. Karel and H. Li, Certain generating subspaces for vertex operator algebras , J. Algebra 217 (1999), 393–421. · Zbl 0951.17012 · doi:10.1006/jabr.1998.7838
[23] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I , J. Amer. Math. Soc. 6 (1993), 905–947. JSTOR: · Zbl 0786.17017 · doi:10.2307/2152745
[24] –. –. –. –., Tensor structures arising from affine Lie algebras, II , J. Amer. Math. Soc. 6 (1993), 949–1011. JSTOR: · Zbl 0786.17017 · doi:10.2307/2152745
[25] H. Li, An analogue of the Hom functor and a generalized nuclear democracy theorem , Duke Math. J. 93 (1998), 73–114. · Zbl 0956.17017 · doi:10.1215/S0012-7094-98-09303-6
[26] A. Meurman and M. Primc, Annihilating fields of standard modules of \(\mathfraksl(2, C)^\sim\) and combinatorial identities , Mem. Amer. Math. Soc. 137 (1999), no. 652. · Zbl 0918.17018
[27] A. Tsuchiya and Y. Kanie, “Vertex operators in conformal field theory on \(\mathbbP^1\) and monodromy representations of braid group” in Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986) , Adv. Stud. Pure Math. 16 , Academic Press, Boston, 1988, 297–372.; “Errata” in Integrable Systems in Quantum Field Theory and Statistical Mechanics , Adv. Stud. Pure Math. 19 , Academic Press, Boston, 1989, 675–682. ; Mathematical Reviews (MathSciNet):
[28] A. Tsuchiya, K. Ueno, and Y. Yamada, “Conformal field theory on universal family of stable curves with gauge symmetries” in Integrable Systems in Quantum Field Theory and Statistical Mechanics , Adv. Stud. Pure Math. 19 , Academic Press, Boston, 1989, 459–566. · Zbl 0696.17010
[29] K. Ueno, “On conformal field theory” in Vector Bundles in Algebraic Geometry (Durham, England, 1993) , London Math. Soc. Lecture Notes Ser. 208 , Cambridge Univ. Press, Cambridge, 1995, 283–345. · Zbl 0846.17027
[30] W. Wang, Rationaity of Virasoro vertex operator algebras , Internat. Math. Res. Notices 1993 , no. 7, 197–211. · Zbl 0791.17029 · doi:10.1155/S1073792893000212
[31] G. M. T. Watts, \(W\)-algebras and coset models , Phys. Lett. B 245 (1990), 65–71. · doi:10.1016/0370-2693(90)90166-4
[32] Y. Zhu, Global vertex operator algebras on Riemann surfaces , Comm. Math. Phys. 165 (1994), 485–531. · Zbl 0819.17019 · doi:10.1007/BF02099421
[33] –. –. –. –., Modular invariance of characters of vertex operator algebras , J. Amer. Math. Soc. 9 , No. 1, (1996), 237–302. JSTOR: · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.