×

zbMATH — the first resource for mathematics

Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries. (English) Zbl 1074.82031
Summary: We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in the temperature, when the nonlinearity parameter is large enough. The results hold in dimension 2 or more for the ferromagnetic models and the \(RP^{N-1}\) liquid crystal models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibility of such transitions. For lattice gauge models our methods provide the first proof of a first-order transition in a model with a continuous gauge symmetry.

MSC:
82D40 Statistical mechanical studies of magnetic materials
82D25 Statistical mechanical studies of crystals
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
Software:
MILA
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arnold, G., Bunk, B., Lippert, T., Schilling, K.: Compact QED under scrutiny: it?s first order. Nucl. Phys. Proc. Suppl. 119, 864-866 (2003) · Zbl 1097.81566 · doi:10.1016/S0920-5632(03)01704-3
[2] Alexander, K.S., Chayes, L.: Nonperturbative criteria for Gibbsian uniqueness. Commun. Math. Phys. 189, 447-464 (1997) · Zbl 0888.60092 · doi:10.1007/s002200050210
[3] Alvarez, G., Fort, H.: Phase transitions driven by vortices in two-dimensional superfluids and superconductors: From Kosterlitz-Thouless to first order. Phys. Rev. B 63, p. 132504, (2001)
[4] Angelescu, N., Zagrebnov, V.A.: A lattice model of liquid crystals with matrix order parameter. J.Phys. A, Math. Gen. 15, L639?L643 (1982)
[5] Biskup, M., Chayes, L.: Rigorous analysis of discontinuous phase transitions via mean-field bounds. Commun. Math. Phys. 238, 53-93 (2003) · Zbl 1051.82008
[6] Blöte, H.W.J., Guo, W.N.: Phase transitions in the two-dimensional O(3) model. Int. J. Mod. Phys. B 16, 1891-1897 (2002) · Zbl 1073.82547 · doi:10.1142/S0217979202011603
[7] Blöte, H.W.J., Guo, W.N., Hilhorst, H.J.: Phase transition in a Two-Dimensional Heisenberg Model. Phys. Rev. Lett. 88, p. 047203 (2002)
[8] Caracciolo, S., Pelissetto, A.: Two-dimensional Heisenberg model with nonlinear interaction. Phys. Rev. E 66, p. 016120 (2002) · Zbl 1137.82309
[9] Creutz, M., Jacobs, L., Rebbi, C.: Monte Carlo computations in lattice gauge theories. Phys. Rep. 95, 201-282 (1983) · doi:10.1016/0370-1573(83)90016-9
[10] Chayes, L.: Discontinuity of the spin-wave stiffness of the two-dimensional XY model. Commun. Math. Phys. 197, 623-640 (1998) · Zbl 0941.82012 · doi:10.1007/s002200050466
[11] Chayes, L.: Private communication
[12] Domb, C., Green, M.S.: Phase Transitions and Critical Phenomena, Vol 6, Academic Press, 1976
[13] Dobrushin, R.L., Shlosman, S.B.: Absence of breakdown of continuous symmetry in two- dimensional models of statistical physics. Commun. Math. Phys. 42, 31-40 (1975) · doi:10.1007/BF01609432
[14] Dobrushin, R.L., Shlosman, S.B.: Phases corresponding to the local minima of the energy. Selecta Math. Soviet. 1, 317-338 (1981)
[15] Domany, E., Schick, M., Swendsen, R.H.: First Order Transition in an XY model with Nearest-Neighbor Interactions. Phys. Rev. Lett. 52, 1535-1538 (1984) · doi:10.1103/PhysRevLett.52.1535
[16] van Enter, A.C.D., Shlosman, S.B.: First-Order Transitions for n-Vector models in Two and More Dimensions: Rigorous Proof. Phys. Rev. Lett. 89, p. 285702 (2002)
[17] Espriu, D., Tagliacozzo, L.: Compact lattice U(1) and Seiberg-Witten duality. Phys. Lett. B 557, 125-133 (2003) · Zbl 1009.81041
[18] Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Berlin-Heidelberg-New York: Springer, 1992 · Zbl 0761.60061
[19] Fröhlich, J., Lieb, E.H.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233-267 (1978) · doi:10.1007/BF01612891
[20] Farinas Sanchez, A.I., Paredes R., Berche, V., Berche, B.: Evidence for a topological transition in nematic-to-isotropic phase transition in two dimensions. Phys. Lett. A 308, 461-466 (2003) · Zbl 01876256 · doi:10.1016/S0375-9601(03)00060-4
[21] Fröhlich, J., Spencer, T.: Massless Phases and Symmetry Restoration in Abelian Gauge Theories. Commun. Math. Phys. 83, 411-468 (1983) · doi:10.1007/BF01213610
[22] Georgii, H.-O.: Gibbs Measures and Phase Transitions. Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 9), Berlin?New York, 1988 · Zbl 0657.60122
[23] Georgii, H.-O.: Percolation for Low Energy Clusters and Discrete Symmetry Breaking in Classical Spin Systems. Commun. Math. Phys. 81, 455-473 (1981) · doi:10.1007/BF01208268
[24] Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. Phase transitions and critical phenomena, C. Domb, J.L. Lebowitz, eds., London, Academic Press, to appear
[25] Di Giacomo, A.: Investigating QCD Vacuum on the lattice. Nucl. Phys. Proc. Suppl. 108, 21-28 (2002) · Zbl 1080.81629 · doi:10.1016/S0920-5632(02)01300-2
[26] Guth, A.H.: Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D 21, 2291-2307 (1980) · doi:10.1103/PhysRevD.21.2291
[27] van Himbergen, J.E.: From continuous to first-order transition in a simple XY model. Phys. Rev. Lett. 53, 5-8 (1984) · doi:10.1103/PhysRevLett.53.5
[28] Ioffe, D., Shlosman, S.B., Velenik, Y.: 2D Models of Statistical Physics with Continuous Symmetry: The Case of Singular Interactions. Commun. Math. Phys. 226, 433-454 (2002) · Zbl 0990.82004 · doi:10.1007/s002200200627
[29] Jonsson, A., Minnhagen, P., Nýlen, M.: New critical point for two-dimensional XY-type models. Phys. Rev. Lett. 70, 1327-1330 (1993) · doi:10.1103/PhysRevLett.70.1327
[30] Knops, H.J.F.: First-Order transition in the XY model. Phys. Rev. B 30, 470-472 (1984) · doi:10.1103/PhysRevB.30.470
[31] Kotecký, R., Shlosman, S.B.: First-order transitions in large entropy lattice models. Comm. Math. Phys. 83, 493-515 (1982) · doi:10.1007/BF01208713
[32] Kotecký, R., Laanait, L., Messager, A., Ruiz, J.: The q-state Potts model in the standard Pirogov-Sinai Theory: surface tensions and Wilson loops. J. Stat. Phys. 58, 199-248 (1990) · doi:10.1007/BF01020292
[33] Kunz, H., Zumbach, G.: First-order phase transitions in the two- and three-dimensional RPn-1 and CPn-1 models, in the large-n limit. J. Phys. A, Math. Gen. 22, L1043?L1048 (1982)
[34] Kunz, H., Zumbach, G.: Topological phase transitions in a two-dimensional nematic n-vector model: A numerical study. Phys. Rev. B 46, 662-673 (1992) · doi:10.1103/PhysRevB.46.662
[35] Laanait, L., Messager, A., Ruiz, J.: Discontinuity of the Wilson string tension in the 4-dimensional lattice pure gauge model. Commun. Math. Phys. 126, 103-131 (1989) · Zbl 0681.60108 · doi:10.1007/BF02124333
[36] Lasher, G.: Monte Carlo Results for a Discrete-Lattice Model of Nematic Ordering. Phys. Rev. A 5, 1350-1354 (1972) · doi:10.1103/PhysRevA.5.1350
[37] Lebwohl, P.A., Lasher, G.: Nematic-Liquid-Crystal Order-A Monte Carlo Calculation. Phys. Rev. A 6, 426-429 (1972) and 7, p. 2222 (1973) · doi:10.1103/PhysRevA.6.426
[38] Magistrali, D.: Master?s thesis, Pavia, 2002
[39] Mermin, N.D., Wagner, H.: Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Heisenberg Models. Phys. Rev. Lett. 17, 1133-136 (1966) · doi:10.1103/PhysRevLett.17.1133
[40] Mila, F.: First-order versus Kosterlitz-Thouless transition in a class of modified XY models. Phys. Rev. B 47, 442-445 (1993) · doi:10.1103/PhysRevB.47.442
[41] Mondal, E., Roy, S.K.: Finite-size scaling in the planar Lebwohl-Lasher model. Phys. Lett. A 312, 397-410 (2003) · Zbl 1050.82010 · doi:10.1016/S0375-9601(03)00576-0
[42] Patrascioiu, A., Seiler, E.: The Difference between Abelian and Non-Abelian Models: Fact and Fancy. http://arxiv.org/abs/math.ph/9903038, 1999
[43] Pecherski, E.A., Shlosman, S.B.: Low-temperature phase transitions in systems with one ground state. Theor. Math. Phys. 70, 325-330 (1987) · doi:10.1007/BF01041012
[44] Peskin, M.: Mandelstam-?t Hooft duality in abelian lattice models. Ann. Phys. 113, 122-152 (1978) · doi:10.1016/0003-4916(78)90252-X
[45] Priezjev, N., Pelcovits, R.A.: Cluster Monte Carlo Simulations of the Nematic-Isotropic Transition. Phys. Rev. E 63, 062702 (2001) · doi:10.1103/PhysRevE.63.062702
[46] Priezjev, N., Pelcovits, R.A.: Disclination loop behavior near the nematic-isotropic transition. Phys. Rev. E 64, 031710 (2001) · doi:10.1103/PhysRevE.64.031710
[47] Pal, A., Roy, S.K.: Monte Carlo simulation of a planar lattice model with P4 interactions. Phys. Rev. E 67, 011705 (2003) · doi:10.1103/PhysRevE.67.011705
[48] Romano, S.: Computer simulation study of a nematogenic lattice-gas model with fourth-rank interactions. Int.J.Mod. Phys. B 16, 2901-2915 (2002) · doi:10.1142/S0217979202009986
[49] Savit, R.: Topological Excitations in U(1) Invariant Theories. Phys. Rev. Lett. 39, 55-58 (1977) · doi:10.1103/PhysRevLett.39.55
[50] Seuss, Dr.: The Cat in the Hat Comes Back. New York: Random House, 1958
[51] Shlosman, S.B.: The method of reflection positivity in the mathematical theory of first-order phase transitions. Russ. Math. Surv. 41, 83-145 (1986) · doi:10.1070/RM1986v041n03ABEH003322
[52] Shukla, P., Sluckin, T.J.: Renormalisation group study of a lattice model for the isotropic-nematic transition. J. Phys. A 18, 93-100 (1985) · doi:10.1088/0305-4470/18/1/021
[53] Smit, J.: Introduction to quantum fields on a lattice. Cambridge Lecture Notes in Physics 15, Cambridge: CUP, 2002. See in particular Chapters 4 and 5 · Zbl 1021.81043
[54] Sokal, A.D., Starinets, A.O.: Pathologies of the large-N limit for RPN-1, CPN-1, QPN-1 and mixed isovector/ isotensor sigma-models. Nucl. Phys. B 601, 425-502 (2001) · Zbl 0997.81073 · doi:10.1016/S0550-3213(01)00065-7
[55] Solomon, S.: Vortices and phase transitions in nonabelian spin models. Phys. Lett. B 100, 492-496 (1981) · doi:10.1016/0370-2693(81)90612-2
[56] Tchernyshyov, O., Sondhi, S.L.: Liquid-gas and other unusual thermal phase transitions in some large-N magnets. Nucl. Phys. B 639, 429-449 (2002) · Zbl 0997.82009 · doi:10.1016/S0550-3213(02)00482-0
[57] van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879-1167 (1993) · Zbl 1101.82314 · doi:10.1007/BF01048183
[58] Woldemariam, H.: Augsburg master thesis, 2000
[59] Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 4th edition. Oxford: Clarendon Press, 2002 · Zbl 0995.81030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.