×

Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand. (English) Zbl 1074.90505

Summary: A single-item single-period Economic Order Quantity model for deteriorating items with a ramp-type demand and Weibull deterioration distribution is considered. The shortages in inventory are allowed and backlogged completely. The model is developed over an infinite planning horizon and the optimal replenishment policy is derived by minimizing the total inventory cost per unit time. The numerical solution of the model is obtained, and the sensitivity of the parameters involved in the model is also examined.

MSC:

90B05 Inventory, storage, reservoirs

Software:

Mathematica
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/S0305-0548(97)00081-6 · Zbl 1042.90504
[2] COVERT R. P., AIIE Transactions 5 pp 323– (1973)
[3] DOI: 10.1057/jors.1977.142 · Zbl 0372.90052
[4] GOSWAMI A., Journal of the Operation Research Society 42 pp 1105– (1991) · Zbl 0741.90015
[5] DOI: 10.1016/S0377-2217(00)00248-4 · Zbl 0978.90004
[6] HARIGA M., Journal of the Operational Research Society 47 pp 1228– (1996) · Zbl 0871.90028
[7] HILL R M., Journal of the Operational Research Society 46 pp 1250– (1995) · Zbl 0843.90039
[8] DOI: 10.1080/00207729608929285 · Zbl 0860.90050
[9] DOI: 10.1080/00207547508943019
[10] MONDAL B, Journal of Interdisciplinary Mathematics 1 pp 49– (1998) · Zbl 0911.90142
[11] DOI: 10.1287/opre.30.4.680 · Zbl 0486.90033
[12] DOI: 10.1016/S0167-6377(00)00044-4 · Zbl 1096.90518
[13] PHILIP G C, AIIE Transactions 6 pp 159– (1974)
[14] RAAFAT F., Journal of the Operational Research Society 42 pp 27– (1991) · Zbl 0718.90025
[15] DOI: 10.1016/S0167-6377(02)00150-5 · Zbl 1013.90006
[16] DOI: 10.1016/S0925-5273(98)00113-3
[17] WOLFRAM S., Mathematics. A System for Doing Mathematics by Computer (1988) · Zbl 0671.65002
[18] WU J.-W., Information and Management Science 3 pp 41– (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.