Finite time ruin probabilities with one Laplace inversion. (English) Zbl 1074.91026

Summary: We present an explicit formula for the Laplace transform in time of the finite time ruin probabilities of a classical Levy model with phase-type claims. Our result generalizes the ultimate ruin probability formula of S. Asmussen and T. Rolski [ibid. 10, 259–274 (1991; Zbl 0748.62058)] – see also the analog queuing formula for the stationary waiting time of the M/Ph/1 queue in M. F. Neuts [Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach. Johns Hopkins University Press, Baltimore, MD, (1981; Zbl 0469.60002)] – and it considers the deficit at ruin as well.


91B30 Risk theory, insurance (MSC2010)
Full Text: DOI


[1] Arfwedson, G., 1954. Research in collective risk theory. Skandinavisk Aktuarietidskrift 37, 191-223. · Zbl 0058.36101
[2] Asmussen, S., 1992. Phase-type representations in random walk and queueing problems. The Annals of Probability 20, 772-789. · Zbl 0755.60049
[3] Asmussen, S., 2000. Ruin Probabilities. World Scientific, Singapore. · Zbl 0960.60003
[4] Asmussen, S., Bladt, M., 1997. Renewal theory and queueing algorithms for matrix-exponential distributions. Chakravarthy, S.R., Alfa, A.S. (Eds.), Matrix-analytic Methods in Stochastic Models. Marcel Dekker, New York, pp. 313-341. · Zbl 0872.60064
[5] Asmussen, S., Rolski, 1991. Computational Methods in risk theory: a matrix-algorithmic approach. IME 10, 259-274. · Zbl 0748.62058
[6] Asmussen, S.; Avram, F.; Usabel, M., Erlangian approximations for finite-horizon ruin probabilities, Astin bulletin, 32, 267-281, (2002) · Zbl 1081.60028
[7] Avram, F., Usabel, M, 2003. Ruin probabilities for risk processes with phase-type waiting times. Submitted for publication. · Zbl 1074.91026
[8] Bertoin, J., 1996. Lévy Processes. Cambridge University Press, Cambridge.
[9] Bingham, N.H., Fluctuation theory in continuous time, Advances in applied probability, 7, 705-766, (1975) · Zbl 0322.60068
[10] Cramèr, H., 1957. Collective Risk Theory. Jub. Volume of F. Skandia.
[11] Gerber, H.; Landry, B., On the discounted penalty at ruin in a jump-diffusion and the perpetual put option, Insurance: mathematics and economics, 22, 263-276, (1998) · Zbl 0924.60075
[12] Gerber, H.; Shiu, E., The joint distribution of the time to ruin, the surplus immediate before ruin, and the deficit at ruin, Insurance: mathematics and economics, 21, 129-137, (1997) · Zbl 0894.90047
[13] Gerber, H.; Shiu, E., On the time value of ruin, North American actuarial journal, 2, 1, 48-78, (1998) · Zbl 1081.60550
[14] Gerber, H.; Goovaerts, M.; Kaas, R., On the probability and severity of ruin, ASTIN bulletin, 17, 2, 151-163, (1987)
[15] Seal, H., 1974. The numerical calculation of U(w,t), the probability of non-ruin in an interval (0,t). Scandinavian Actuarial Journal 1974, 121-139. · Zbl 0288.60088
[16] Seber, G.A.F., 1984. Multivariate Observations. Wiley, New York.
[17] Sparre Andersen, E., 1957. On the collective theory of risk in the case of contagion between claims. In: Proceedings of the Transactions of the XVth International Congress on Actuaries, vol. II, New York, pp. 219-229.
[18] Stanford, D.; Stroinski, K., Recursive methods for computing finite-time ruin probabilities for phase-type distributed claim sizes, Astin bulletin, 24, 2, 235-254, (1994)
[19] Stanford, D.; Stroinski, K.; Lee, K., Ruin probabilities based at claim instants for some non-Poisson claim processes, Insurance: mathematics and economics, 26, 251-267, (2000) · Zbl 1013.91068
[20] Thorin, O., Further remarks on the ruin problem in case the epochs of claims form a renewal process, Skandinavisk aktuarietidskrift, 1438, 121-142, (1971) · Zbl 0283.62096
[21] Willmot, G., A Laplace transform representation in a class of renewal queueing and risk process, Journal of applied probability, 36, 570-584, (1999) · Zbl 0942.60086
[22] Willmot, G., On the evaluation of the conditional distribution of the deficit at the ruin time, Scandinavian actuarial journal, 100, 1, 63-79, (2000) · Zbl 0958.91029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.