zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
General conditions for global stability in a single species population-toxicant model. (English) Zbl 1074.92036
Summary: We deal with the global stability for a well-known population-toxicant model. We make use of a geometrical approach to the global stability analysis for ordinary differential equations which is based on the use of a higher-order generalization of the Bendixson criterion. We obtain sufficient conditions for the global stability of the unique nontrivial equilibrium. These conditions are expressed in terms of a generic functional describing the population dynamics. In the special case of logistic-like population dynamics, we get conditions which improve the ones previously known, obtained by means of the Lyapunov direct method.

34D23Global stability of ODE
92D25Population dynamics (general)
Full Text: DOI
[1] Buonomo, B.; Di Liddo, A.; Sgura, I.: A diffusive-convective model for the dynamics of population-toxicant interactionssome analytical and numerical results. Math. biosci. 157, 37-64 (1999)
[2] Dubey, B.; Hussain, J.: Modelling the interaction of two biological species in a polluted environment. J. math. Anal. appl. 246, 58-79 (2000) · Zbl 0952.92030
[3] Fan, M.; Li, M. Y.; Wang, K.: Global stability of an SEIS epidemic model with recruitment and a varying total population size. Math. biosci. 170, 199-208 (2001) · Zbl 1005.92030
[4] Fergola, P.; Buonomo, B.; Ruggieri, C.: Chemostat type equations modelling a polluted environment. Math. comput. Modelling 24, No. 2, 13-22 (1996) · Zbl 0881.92032
[5] Fergola, P.; Tenneriello, C.; Ma, Z.; Wen, X.: Effects of toxicant on chemostat models. Cybernetics and systems’94, wien, 887-894 (1994)
[6] Fergola, P.; Tenneriello, C.; Wang, W.: Chemostat equations for a polluted environment with delayed nutrient recycling. Proceedings of the international conference on mathematical biology, Hangzhou, May 1997, 41-46 (1998) · Zbl 0983.92034
[7] Freedman, H. I.; Ruan, S.; Tang, M.: Uniform persistence and flows near a closed positively invariant set. J. differential equations 6, No. 4, 583-600 (1994) · Zbl 0811.34033
[8] Freedman, H. I.; Shukla, J. B.: Models for the effect of toxicant in single-species and predator--prey systems. J. math. Biol. 30, 15-30 (1991) · Zbl 0825.92125
[9] Gard, T. G.: A stochastic model for the effects of toxicants on populations. Ecol. modelling 51, 273-280 (1990)
[10] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. (1983) · Zbl 0515.34001
[11] Hallam, T. G.; Clark, C. E.; Jordan, G. S.: Effect of toxicants on populationsa qualitative approach, II. First order kinetics. J. math. Biol. 18, 25-37 (1983) · Zbl 0548.92019
[12] Hallam, T. G.; De Luna, J. T.: Effect of toxicants on populationsa qualitative approach, III. Environmental and food chain pathways. J. theor. Biol. 109, 411-429 (1984)
[13] Hutson, V.; Schmitt, K.: Permanence and the dynamics of biological systems. Math. biosci. 111, 1-71 (1992) · Zbl 0783.92002
[14] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J.: Global stability of a SEIR model with varying total population size. Math. biosci. 160, 191-213 (1999) · Zbl 0974.92029
[15] Li, M. Y.; Muldowney, J. S.: On Bendixson’s criterion. J. differential equations 106, 27-39 (1993) · Zbl 0786.34033
[16] Li, M. Y.; Muldowney, J. S.: Global stability of the SEIR model in epidemiology. Math. biosci. 125, 155-164 (1995) · Zbl 0821.92022
[17] Li, M. Y.; Muldowney, J. S.: A geometric approach to global-stability problems. SIAM J. Math. anal. 27, No. 4, 1070-1083 (1996) · Zbl 0873.34041
[18] Liu, H.; Ma, Z.: The threshold of survival for system of two species in a polluted environment. J. math. Biol. 30, 49-61 (1991) · Zbl 0745.92028
[19] Ma, Z.; Cui, G.; Wang, W.: Persistence and extinction of a population in a polluted environment. Math. biosci. 101, 75-97 (1990) · Zbl 0714.92027
[20] Jr., R. H. Martin: Logarithmic norms and projections applied to linear differential systems. J. math. Anal. appl. 45, 432-454 (1974) · Zbl 0293.34018
[21] Muldowney, J. S.: Compound matrices and ordinary differential equations. Rocky mount. J. math. 20, 857-872 (1990) · Zbl 0725.34049
[22] Smith, R. A.: An index theorem and bendixon’s negative criterion for certain differential equations of higher dimensions. Proc. roy. Soc. Edinburgh 91A, 63-77 (1981) · Zbl 0499.34026
[23] Srinivasu, P. D. N.: Control of environmental pollution to conserve a population. Nonlinear anal. 3, 397-411 (2002) · Zbl 0998.92042
[24] Wang, L.; Li, M. Y.; Kirschner, D.: Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression. Math. biosci. 179, 207-217 (2002) · Zbl 1008.92026