[1] |
Aubin, J. P.; Cellina, A.: Differential inclusions. (1984) · Zbl 0538.34007 |

[2] |
Babaali, M., & Egerstedt, M. (2003). Pathwise observability and controllability are decidable. In Proceedings of the 42nd IEEE conference on decision and control, Maui, Hawaii (pp. 5771-5776). |

[3] |
Barker, G. P.; Jr., L. T. Conner; Stanford, D. P.: Complete controllability and contracibility in multimodel systems. Linear algebra and its applications 110, 55-74 (1988) · Zbl 0658.93011 |

[4] |
Bemporad, A.; Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, No. 3, 407-427 (1999) · Zbl 1049.93514 |

[5] |
Blanchini, F.: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions. IEEE transactions on automatic control 39, No. 2, 428-433 (1994) · Zbl 0800.93754 |

[6] |
Blanchini, F.: Nonquadratic Lyapunov function for robust control. Automatica 31, No. 3, 451-461 (1995) · Zbl 0825.93653 |

[7] |
Blanchini, F.: The gain scheduling and the robust state feedback stabilization problems. IEEE transactions on automatic control 45, No. 11, 2061-2070 (2000) · Zbl 0991.93102 |

[8] |
Blanchini, F.; Miani, S.: A new class of universal Lyapunov functions for the control of uncertain linear systems. IEEE transactions on automatic control 44, No. 3, 641-647 (1999) · Zbl 0962.93081 |

[9] |
Borrelli, F.: Constrained optimal control of linear and hybrid systems. (2003) · Zbl 1030.49036 |

[10] |
Borrelli, F., Baotic, M., Bemporad, A., & Morari, M. (2003). Constrained optimal control of discrete-time linear hybrid systems. Technical report AUT03-05, Automatic Control Lab., ETH Zurich, Switzerland. · Zbl 1293.93421 |

[11] |
Branicky, M. S.; Borkar, V. S.; Mitter, S. K.: A unified framework for hybrid controlmodel and optimal control theory. IEEE transactions on automatic control 43, No. 1, 31-45 (1998) · Zbl 0951.93002 |

[12] |
Brayton, R. K.; Tong, C. H.: Stability of dynamic systemsa constructive approach. IEEE transactions on circuits and systems 26, No. 4, 224-234 (1979) · Zbl 0413.93048 |

[13] |
Brayton, R. K.; Tong, C. H.: Constructive stability and asymptotic stability of dynamic systems. IEEE transactions on circuits and systems 27, No. 11, 1121-1130 (1980) · Zbl 0458.93047 |

[14] |
Brockett, R. W., & Wood, J. R. (1974). Electrical networks containing controlled switches. In Applications of Lie groups theory to nonlinear networks problems, supplement to IEEE international symposium on circuit theory, San Francisco, CA (pp. 1-11). |

[15] |
Cheng, D.: Stabilization of planar switched systems. Systems and control letters 51, No. 2, 79-88 (2004) · Zbl 1157.93482 |

[16] |
Cheng D., & Chen, H. F. (2003). Accessibility of switched linear systems. In Proceedings of 42nd IEEE conference on decision and control, Maui, Hawaii (pp. 5759-5764). |

[17] |
Chizeck, H. J.; Willsky, A. S.; Castanon, D.: Discrete-time Markovian jump linear quadratic optimal control. International journal of control 43, No. 1, 213-231 (1986) · Zbl 0591.93067 |

[18] |
Jr., L. T. Conner; Stanford, D. P.: State deadbeat response and obsevability in multi-modal systems. SIAM journal on control and optimization 22, No. 4, 630-644 (1984) · Zbl 0549.93036 |

[19] |
Jr., L. T. Conner; Stanford, D. P.: The structure of the controllable set for multimodal systems. Linear algebra and its applications 95, 171-180 (1987) · Zbl 0636.93008 |

[20] |
Costa, O. L. V.; Tuesta, E. F.: Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems. IEEE transactions on automatic control 48, No. 10, 1836-1842 (2003) |

[21] |
Daafouz, J.; Bernussou, J.: Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems and control letters 43, No. 5, 355-359 (2001) · Zbl 0978.93070 |

[22] |
Daafouz, J., & Bernussou, J. (2002). Robust dynamic output feedback control for switched systems. In Proceedings of 41st IEEE conference on decision and control, Las Vegas, Nevada (pp. 4389-4394). |

[23] |
Daafouz, J.; Riedinger, P.; Iung, C.: Stability analysis and control synthesis for switched systemsa switched Lyapunov function approach. IEEE transactions on automatic control 47, No. 11, 1883-1887 (2002) |

[24] |
Dayawansa, W. P.; Martin, C. F.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE transactions on automatic control 44, No. 4, 751-760 (1999) · Zbl 0960.93046 |

[25] |
Decarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B.: Perspective and results on the stability and stabilizability of hybrid systems. Proceedings of IEEE 88, No. 7, 1069-1082 (2000) |

[26] |
Do Val, J. B. R.; Geromel, J. C.; Goncalves, A. P. C.: The H2-control for jump linear systemscluster observations of the Markov state. Automatica 38, No. 2, 343-349 (2002) |

[27] |
Egerstedt, M., Ogren, P., Shakernia, O., & Lygeros, J. (2000). Toward optimal control of switched linear systems. In Proceedings of 39th IEEE conference on decision and control, Sydney (pp. 587-592). |

[28] |
Ezzine, J. & Haddad, A. H. (1988). On the controllability and observability of hybrid systems. In Proceedings of American control conference, Atlanta, GA (pp. 41-46). |

[29] |
Ezzine, J.; Haddad, A. H.: Controllability and observability of hybrid systems. International journal of control 49, No. 6, 2045-2055 (1989) · Zbl 0683.93011 |

[30] |
Ezzine, J.; Haddad, A. H.: Error bounds in the averaging of hybrid systems. IEEE transactions on automatic control 34, No. 11, 1188-1192 (1989) · Zbl 0693.93013 |

[31] |
Fang, Y.; Loparo, K. A.: Stabilization of continuous-time jump linear systems. IEEE transactions on automatic control 47, No. 10, 1590-1603 (2002) |

[32] |
Feng, G.; Ma, J.: Quadratic stabilization of uncertain discrete-time fuzzy dynamic systems. IEEE transactions on circuits and systems ifundamental theory and applications 48, No. 11, 1337-1344 (2001) |

[33] |
Feuer, A., Goodwin, G. C., & Salgado, M. (1997). Potential benefits of hybrid control for linear time invariant plants. In Proceedings of American control conference, Albuquerque, New Mexico (pp. 2790-2794). |

[34] |
Fliess, M.: Reversible linear and nonlinear discrete-time dynamics. IEEE transactions on automatic control 37, No. 8, 1144-1153 (1992) · Zbl 0764.93058 |

[35] |
Fryszkowski, A.; Rzezuchowski, T.: Continuous version of Filippov-wazewski relaxation theorem. Journal of differential equations 94, No. 2, 254-265 (1991) |

[36] |
Fu, M.; Barmish, B.: Adaptive stabilization of linear systems via switching control. IEEE transactions on automatic control 31, No. 12, 1097-1103 (1986) · Zbl 0607.93041 |

[37] |
Ge, S. S.; Hang, C. C.; Lee, T. H.; Zhang, T.: Stable adaptive neural network control. (2003) · Zbl 1001.93002 |

[38] |
Ge, S. S.; Sun, Z.; Lee, T. H.: Reachability and controllability of switched linear discrete-time systems. IEEE transactions on automatic control 46, No. 9, 1437-1441 (2001) · Zbl 1031.93028 |

[39] |
Ge, S. S.; Wang, Z. P.; Lee, T. H.: Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica 39, No. 8, 1451-1460 (2003) · Zbl 1038.93079 |

[40] |
Gokbayrak, K., & Cassandras, C. G. (2000). A hierarchical decomposition method for optimal control of hybrid systems. In Proceedings of 39th IEEE conference on decision and control, Sydney (pp. 1816-1821). |

[41] |
Gurvits, L.: Stability of discrete linear inclusion. Linear algebra and its applications 231, 47-85 (1995) · Zbl 0845.68067 |

[42] |
Hedlund, S.; Rantzer, A.: Convex dynamic programming for hybrid systems. IEEE transactions on automatic control 47, No. 9, 1536-1540 (2002) |

[43] |
Hespanha, J. P. (2001). Extending LaSalle’s invariance principle to switched linear systems. In Proceedings of 40th IEEE conference on decision and control, Orlando, FL (pp. 2496-2501). |

[44] |
Hespanha, J. P.; Liberzon, D.; Morse, A. S.: Overcoming the limitations of adaptive control by means of logic-based switching. Systems and control letters 49, No. 1, 49-65 (2003) · Zbl 1157.93440 |

[45] |
Hespanha, J. P.; Morse, A. S.: Stabilization of nonholonomic integrators via logic-based switching. Automatica 35, No. 3, 385-393 (1999) · Zbl 0931.93055 |

[46] |
Ingalls, B.; Sontag, E. D.; Wang, Y.: An infinite-time relaxation theorem for differential inclusions. Proceedings of the American mathematical society 131, 487-499 (2003) · Zbl 1020.34016 |

[47] |
Ishii, H.; Francis, B. A.: Stabilizing a linear system by switching control with Dwell time. IEEE transactions on automatic control 47, No. 12, 1962-1973 (2002) |

[48] |
Johnson, T. L. (1985). Synchronous switching linear systems. In Proceedings of 24th IEEE conference on decision and control, Ft. Lauderdale, FL (pp. 1699-1700). |

[49] |
Kar, I. N.: Quadratic stabilization of a collection of linear systems. International journal of control 33, No. 2, 153-160 (2002) · Zbl 1016.93054 |

[50] |
Kolmanovsky, I.; Mcclamroch, N. H.: Developments in nonholonomic control problems. IEEE control systems magazine 15, No. 6, 20-36 (1995) |

[51] |
Kolmanovsky, I.; Mcclamroch, N. H.: Hybrid feedback laws for a class of cascade nonlinear control systems. IEEE transactions on automatic control 41, No. 9, 1271-1282 (1996) · Zbl 0862.93048 |

[52] |
Kosmatopoulos, E. B.; Ioannou, P.: A switching adaptive controller for feedback linearizable systems. IEEE transactions on automatic control 44, No. 4, 742-750 (1999) · Zbl 0957.93073 |

[53] |
Kozin, F.: A survey of stability of stochastic systems. Automatica 5, No. 1, 95-112 (1969) · Zbl 0164.40301 |

[54] |
Leith, D.; Shorten, R.; Leithead, W.; Mason, O.; Curran, P.: Issues in the design of switched linear systemsa benchmark study. International journal of adaptive control 17, No. 2, 103-118 (2003) · Zbl 1016.93026 |

[55] |
Leonessa, A.; Haddad, W. M.; Chellaboina, V.: Nonlinear system stabilization via hierarchical switching control. IEEE transactions on automatic control 46, No. 1, 17-28 (2001) · Zbl 0992.93076 |

[56] |
Li, J., Wang, H. O., Niemann, D., & Tanaka, K. (1999). Synthesis of gain-scheduled controller for a class of LPV systems. In Proceedings of 38th IEEE conference on decision and control, Phoenix, Arizona (pp. 2314-2319). |

[57] |
Li, Z. G.; Wen, C. Y.; Soh, Y. C.: Observer-based stabilization of switching linear systems. Automatica 39, No. 3, 517-524 (2003) · Zbl 1013.93045 |

[58] |
Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched systems. IEEE control systems magazine 19, No. 5, 59-70 (1999) |

[59] |
Lin, Y.; Sontag, E. D.; Wang, Y.: A smooth converse Lyapunov theorem for robust stability. SIAM journal on control and optimization 34, No. 1, 124-160 (1996) · Zbl 0856.93070 |

[60] |
Lincoln, B.; Bernhardsson, B.: LQR optimization of linear system switching. IEEE transactions on automatic control 47, No. 10, 1701-1705 (2002) |

[61] |
Loparo, K. A.; Aslanis, J. T.; Iiajek, O.: Analysis of switching linear systems in the plane, part 2, global behavior of trajectories, controllability and attainability. Journal of optimization theory and applications 52, No. 3, 395-427 (1987) · Zbl 0586.93033 |

[62] |
Mancilla-Aguilar, J. L.; Garcia, R. A.: A converse Lyapunov theorem for nonlinear switched systems. Systems and control letters 41, No. 1, 67-71 (2000) · Zbl 1054.93515 |

[63] |
Mariton, M.: Jump linear systems in automatic control. (1990) |

[64] |
Mcclamroch, N. H.; Kolmanovsky, I.: Performance benefits of hybrid control design for linear and nonlinear systems. Proceedings of IEEE 88, No. 7, 1083-1096 (2000) |

[65] |
Michel, A. N.: Recent trends in the stability analysis of hybrid dynamical systems. IEEE transactions on circuits and systems I: Fundamental theory and applications 46, No. 1, 120-134 (1999) |

[66] |
Molchanov, A. P.; Pyatniskiy, Y. S.: Criteria for absolute stability of differential and difference inclusions encountered in control theory. Systems and control letters 13, No. 1, 59-64 (1989) |

[67] |
Morari, M.; Baotic, M.; Borrelli, F.: Hybrid systems modelling and control. European journal of control 9, No. 2,3, 177-189 (2003) · Zbl 1293.93421 |

[68] |
Narendra, K. S.; Balakrishnan, J.: Adaptive control using multiple models. IEEE transactions on automatic control 42, No. 2, 171-187 (1997) · Zbl 0869.93025 |

[69] |
Piccoli, B.; Sussmann, H. J.: Regular synthesis and sufficiency conditions for optimality. SIAM journal on control and optimization 39, No. 2, 359-410 (2000) · Zbl 0961.93014 |

[70] |
Polanski, A.: On absolute stability analysis by polyhedral Lyapunov functions. Automatica 36, No. 4, 573-578 (2000) · Zbl 0980.93073 |

[71] |
Pyatniskiy, E. S.; Rapoport, L. B.: Criteria of asymptotic stability of differential inclusions and periodic motions of time-varying nonlinear control systems. IEEE transactions on circuits and systems I: Fundamental theory and applications 43, No. 3, 219-228 (1996) |

[72] |
Rantzer, A.; Johansson, M.: Piecewise linear quadratic optimal control. IEEE transactions on automatic control 45, No. 4, 629-637 (2000) · Zbl 0969.49016 |

[73] |
Ravindranathan, M.; Leitch, R.: Model switching in intelligent control systems. Artificial intelligence in engineering 13, No. 2, 175-187 (1999) |

[74] |
Riedinger, P., Kratz, F., Iung, C., & Zanne, C. (1999). Linear quadratic optimization for hybrid systems. In Proceedings of 38th IEEE conference on decision and control, Phoenix, Arizona (pp. 3059-3064). |

[75] |
Savkin, A. V.; Evans, R. J.: A new approach to robust control of hybrid systems over infinite time. IEEE transactions on automatic control 43, No. 9, 1292-1296 (1998) · Zbl 0957.93024 |

[76] |
Savkin, A. V.; Evans, R. J.: Hybrid dynamical systems: controller and sensor switching problems. (2002) · Zbl 1015.93002 |

[77] |
Seidman, T. I. (1987). Optimal control for switching systems. In Proceedings of 21st annual conference on information science and systems, Baltimore, ML (pp. 485-489). |

[78] |
Shamma, J. S.; Xiong, D. P.: Set-valued methods for linear parameter varying systems. Automatica 35, No. 6, 1081-1089 (1999) · Zbl 0940.93044 |

[79] |
Shorten, R.; Cairbre, F. O.: A new methodology for the stability analysis of pairwise triangularizable and related switching systems. IMA journal of applied mathematics 67, No. 5, 441-457 (2002) · Zbl 1034.93056 |

[80] |
Stanford, D. P.: Stability for a multi-rate sampled-data system. SIAM journal on control and optimization 17, No. 3, 390-399 (1979) · Zbl 0439.93041 |

[81] |
Stanford, D. P.; Jr., L. T. Conner: Controllability and stabilizability in multi-pair systems. SIAM journal on control and optimization 18, No. 5, 488-497 (1980) · Zbl 0454.93008 |

[82] |
Sun, Z. (2004a). Canonical forms of switched linear control systems. In Proceedings of American control conference, Boston, MA (pp. 5182-5187). |

[83] |
Sun, Z. (2004b). Sampling and control of switched linear systems. Journal of the Franklin Institute, 341, 657-674. · Zbl 1064.94566 |

[84] |
Sun, Z.; Ge, S. S.: Dynamic output feedback stabilization of a class of switched linear systems. IEEE transactions on circuits and systems I: Fundamental theory and applications 50, No. 8, 1111-1115 (2003) |

[85] |
Sun, Z.; Ge, S. S.; Lee, T. H.: Reachability and controllability criteria for switched linear systems. Automatica 38, No. 5, 775-786 (2002) · Zbl 1031.93041 |

[86] |
Sun, Z.; Zheng, D. Z.: On reachability and stabilization of switched linear control systems. IEEE transactions on automatic control 46, No. 2, 291-295 (2001) · Zbl 0992.93006 |

[87] |
Sussmann, H. J. (2001). New theories of set-valued differentials and new versions of the maximum principle of optimal control theory. In A. Isidori, F. Lamnabhi-Lagarrigue, & W. Respondek (Eds.), Nonlinear control in the year 2000 (Vol. 2, pp. 487-526). London: Springer. · Zbl 0998.93022 |

[88] |
Sworder, D. D.: Control of systems subject to sudden changes in character. Proceedings of IEEE 64, No. 8, 1219-1225 (1976) |

[89] |
Szigeti, F. (1992). A differential-algebraic condition for controllability and observability of time varying linear systems. In Proceedings of 31st IEEE conference on decision and control, Tucson, Arizona (pp. 3088-3090). |

[90] |
Tanaka, K.; Sano, M.: A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. IEEE transactions on fuzzy systems 2, No. 2, 119-134 (1994) |

[91] |
Tokarzewski, J.: Stability of periodically switched linear systems and the switching frequency. International journal of systems science 18, No. 4, 697-726 (1987) · Zbl 0619.93057 |

[92] |
Vidal, R., Chiuso, A., Soatto, S., & Sastry, S. (2003). Observability of linear hybrid systems. In Wiedijk, F., Maler, O., & Pnueli, A. (Eds.), Hybrid systems: computation and control (pp. 526-539). Berlin: Springer. · Zbl 1032.93024 |

[93] |
Wicks, M. A.; Peleties, P.; Decarlo, R. A.: Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. European journal of control 4, No. 2, 140-147 (1998) · Zbl 0910.93062 |

[94] |
Witsenhausen, H.: A class of hybrid-state continuous-time dynamic systems. IEEE transactions on automatic control 11, No. 2, 161-167 (1966) |

[95] |
Wonham, W. M.: Linear multivariable control--a geometric approach. (1979) · Zbl 0424.93001 |

[96] |
Xie, G. M.; Wang, L.: Controllability and stabilizability of switched linear-systems. Systems and control letters 48, No. 2, 135-155 (2003) · Zbl 1134.93403 |

[97] |
Xie, G. M.; Zheng, D. Z.; Wang, L.: Controllability of switched linear systems. IEEE transactions on automatic control 47, No. 8, 1401-1405 (2002) |

[98] |
Xu, X. & Antsaklis, P. J. (1999). On the reachability of a class of second-order switched systems. Technical report ISIS-99-003, University of Notre Dame. · Zbl 0948.93013 |

[99] |
Xu, X.; Antsaklis, P. J.: Optimal control of switched systems via nonlinear optimization based on direct differentiations of value functions. International journal of control 75, No. 16-17, 1406-1426 (2002) · Zbl 1039.93005 |

[100] |
Xu, X.; Antsaklis, P. J.: Optimal control of switched systems based on parameterization of the switching instants. IEEE transactions on automatic control 49, No. 1, 2-16 (2004) |

[101] |
Yang, Z.: An algebraic approach towards the controllability of controlled switching linear hybrid systems. Automatica 38, No. 7, 1221-1228 (2002) · Zbl 1031.93042 |

[102] |
Zhao, Q.; Zheng, D. Z.: Stable and real-time scheduling of a class of hybrid dynamic systems. Journal of DEDS 9, No. 1, 45-61 (1999) · Zbl 0920.90078 |