zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. (English) Zbl 1074.93030
Summary: Nonnegative dynamical system models are derived from mass and energy balance considerations that involve dynamic states whose values are nonnegative. These models are widespread in biological, physiological, and ecological sciences and play a key role in the understanding of these processes. In this paper we develop several results on stability, dissipativity, and stability of feedback interconnections of linear and nonlinear nonnegative dynamical systems. Specifically, using linear Lyapunov functions we develop necessary and sufficient conditions for Lyapunov stability, semistability, that is, system trajectory convergence to Lyapunov stable equilibrium points, and asymptotic stability for nonnegative dynamical systems. In addition, using linear and nonlinear storage functions with linear supply rates we develop new notions of dissipativity theory for nonnegative dynamical systems. Finally, these results are used to develop general stability criteria for feedback interconnections of nonnegative dynamical systems.

MSC:
93D05Lyapunov and other classical stabilities of control systems
92B05General biology and biomathematics
93C10Nonlinear control systems
34A30Linear ODE and systems, general
34D20Stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Abraham, R.; Marsden, J. E.; Ratin, T.: Manifolds, tensor analysis, and applications. (1983)
[2] Anderson, D. H.: Compartmental modeling and tracer kinetics. (1983) · Zbl 0509.92001
[3] Bellman, R.: Topics in pharmacokinetics I. Concentration dependent rates. Math. biosci. 6, 13-17 (1970)
[4] Berman, A.; Neumann, M.; Stern, R. J.: Nonnegative matrices in dynamic systems. (1989) · Zbl 0723.93013
[5] Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences. (1979) · Zbl 0484.15016
[6] Berman, A.; Varga, R. S.; Ward, R. C.: Alpsmatrices with nonpositive off-diagonal entries. Linear algebra appl. 21, 233-244 (1978) · Zbl 0401.15018
[7] D.S. Bernstein, S.P. Bhat, Nonnegativity, reducibilty and semistability of mass action kinetics, in: Proc. IEEE Conf. Dec. Contr., Phoenix, AZ, 1999, pp. 2206 -- 2211.
[8] Bernstein, D. S.; Hyland, D. C.: Compartmental modeling and second-moment analysis of state space systems. SIAM J. Matrix anal. Appl. 14, 880-901 (1993) · Zbl 0782.93004
[9] S.P. Bhat, D.S. Bernstein, Lyapunov analysis of semistability, in Amer. Contr. Conference San Diego, CA, 1999, pp. 1608 -- 1612.
[10] Boyd, S. P.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004
[11] Brayton, R. K.; Tong, C. H.: Stability dynamical systemsa constructive approach. IEEE trans. Circ. system 26, 224-234 (1979) · Zbl 0413.93048
[12] Campbell, S. L.; Rose, N. J.: Singular perturbation of autonomous linear systems. SIAM J. Math. anal. 10, 542-551 (1979) · Zbl 0413.34055
[13] Carson, E. R.; Cobelli, C.; Finkelstein, L.: The mathematical modeling of metabolic and endocrine systems. (1983)
[14] Chellabonia, V.; Haddad, W. M.: Exponentially dissipative nonlinear dynamical systemsa nonlinear extension of strict positive realness. J. math. Prob. eng. 2003, 25-45 (2003) · Zbl 1075.93034
[15] Cherruault, Y.: Mathematical modelling in biomedicine. (1986)
[16] Farina, L.; Rinaldi, S.: Positive linear systemstheory and applications. (2000) · Zbl 0988.93002
[17] Feinberg, M.: The existence of uniqueness of states for a class of chemical reaction networks. Arch. rat. Mech. anal. 132, 311-370 (1995) · Zbl 0853.92024
[18] Fiedler, M.; Ptak, V. P.: On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak math. J. 12, 36-48 (1962) · Zbl 0131.24806
[19] Fife, D.: Which linear compartmental systems contain traps?. Math. biosci. 14, 311-315 (1972) · Zbl 0249.92011
[20] Foster, D. M.; Jacquez, J. A.: Multiple zeros for eigenvalues and the multiplicity of traps of a linear compartmental system. Math. biosci. 26, 89-97 (1975) · Zbl 0311.93002
[21] Funderlic, R. E.; Mankin, J. B.: Solution of homogeneous systems of linear equations arising from compartmental models. SIAM J. Sci. statist. Comp. 2, 375-383 (1981) · Zbl 0468.65042
[22] Godfrey, K.: Compartmental models and their applications. (1983) · Zbl 0498.62099
[23] Haddad, W. M.; Bernstein, D. S.: Explicit construction of quadratic Lyapunov functions for small gain, positivity, circle, and Popov theorems and their application to robust stability. Part icontinuous-time theory. Int. J. Robust. nonlin. Contr. 3, 313-339 (1993) · Zbl 0794.93095
[24] Hill, D. J.; Moylan, P. J.: The stability of nonlinear dissipative systems. IEEE trans. Autom. contr. 21, 708-711 (1976) · Zbl 0339.93014
[25] Hill, D. J.; Moylan, P. J.: Stability results of nonlinear feedback systems. Automatica 13, 377-382 (1977) · Zbl 0356.93025
[26] Hirsch, M. W.: Systems of differential equations which are competitive or cooperative. Ilimit sets. SIAM J. Math. anal. 13, 167-179 (1982) · Zbl 0494.34017
[27] Horn, R. A.; Johnson, R. C.: Topics in matrix analysis. (1995) · Zbl 0729.15001
[28] Jacquez, J. A.: Compartmental analysis in biology and medicine. (1985) · Zbl 0703.92001
[29] Jacquez, J. A.; Simon, C. P.: Qualitative theory of compartmental systems. SIAM rev. 35, 43-79 (1993) · Zbl 0776.92001
[30] Kaszkurewicz, E.; Bhaya, A.: Matrix diagonal stability in systems and computation. (2000) · Zbl 0951.93058
[31] Kaczorek, T.: Positive 1D and 2D systems. (2002) · Zbl 1005.68175
[32] Keener, J.; Sneyd, J.: Mathematical physiology. (1998) · Zbl 0913.92009
[33] Khalil, H. K.: Nonlinear systems. (1996) · Zbl 0842.93033
[34] Lasalle, J. P.: Some extensions to Lyapunov’s second method. IRE trans. Circ. theory 7, 520-527 (1960)
[35] Lozano, R.; Brogliato, B.; Egeland, O.; Maschke, B.: Dissipative systems analysis and control. (2000) · Zbl 0958.93002
[36] Maeda, H.; Kodama, S.; Kajiya, F.: Compartmental system analysisrealization of a class of linear systems with physical constraints. IEEE trans. Circ. system 24, 8-14 (1977) · Zbl 0351.93005
[37] Maeda, H.; Kodama, S.; Ohta, Y.: Asymptotic behavior of nonlinear compartmental systemsnonoscillation and stability. IEEE trans. Circ. system 25, 372-378 (1978) · Zbl 0382.93041
[38] Meyer Jr., C. D.; Stadelmaier, M. W.: Singular M-matrices and inverse positivity. Linear algebra appl. 22, 139-156 (1978) · Zbl 0411.15006
[39] Mohler, R. R.: Biological modeling with variable compartmental structure. IEEE trans. Autom. contr. 1974, 922-926 (1974)
[40] Nieuwenhuis, J. W.: About nonnegative realizations. System contr. Lett. 1, 283-287 (1982) · Zbl 0484.93018
[41] Ohta, Y.: Stability criteria for off-diagonal monotone nonlinear dynamical systems. IEEE trans. Circ. system 27, 956-962 (1980) · Zbl 0461.93051
[42] Ohta, Y.; Imanishi, H.; Gong, L.; Haneda, H.: Computer generated Lyapunov functions for a class of nonlinear systems. IEEE trans. Circ. system 40, 343-354 (1993) · Zbl 0790.93120
[43] Ohta, Y.; Maeda, H.; Reachability, S. Kodama: Observability and realizability of continuous-time positive systems. SIAM J. Contr. optimiz. 22, 171-180 (1984) · Zbl 0539.93005
[44] Sandberg, W.: On the mathematical foundations of compartmental analysis in biology medicine and ecology. IEEE trans. Circ. system 25, 273-279 (1978) · Zbl 0377.93034
[45] Sheppard, C. W.; Martin, W. R.: Cation exchange between cells and plasma of mammalian blood. J. gen. Physiol. 33, 703-722 (1950)
[46] Siljak, D. D.: Large-scale dynamic systems. (1978) · Zbl 0384.93002
[47] Siljak, D. D.: Complex dynamical systemsdimensionality, structure and uncertainty. Large scale systems 4, 279-294 (1983) · Zbl 0512.93002
[48] Tsokos, J. O.; Tsokos, C. P.: Statistical modeling of pharmacokinetic systems. ASME J. Dyn. system meas. Contr. 98, 37-43 (1976)
[49] Willems, J. C.: Dissipative dynamical systems part igeneral theory. Arch. rat. Mech. anal. 45, 321-351 (1972) · Zbl 0252.93002
[50] Willems, J. C.: Dissipative dynamical systems part iiquadratic supply rates. Arch. rat. Mech. anal. 45, 359-393 (1972) · Zbl 0252.93003
[51] Willems, J. C.: Lyapunov functions for diagonally dominant systems. Automatica 12, 519-523 (1976) · Zbl 0345.93040