zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of second order nonlinear dynamic equations on time scales. (English) Zbl 1075.34028
The authors consider the nonlinear second order dynamic equation $$(p(t)x^\Delta)^\Delta+q(t)(f\circ x^\sigma)=0,\tag{1}$$ where $p$ and $q$ are positive, real-valued continuous functions, and the nonlinearity $f:\Bbb{R}\to\Bbb{R}$ satisfies the sign condition $xf(x)>0$ and the superlinearity condition $f(x)>K x$ for some $K>0$ and every $x\neq 0$. Two cases, depending on the convergence of the integral $$\int _1^\infty\frac 1{p(t)}\Delta t\tag{2}$$ are discussed separately. New sufficient conditions involving the integral over the coefficients of equation (1) which guarantee that all solutions are oscillatory (in the case when (2) is divergent) or either oscillatory or convergent to zero (in the case of convergence of the integral (2)) are derived. The sharpness of these criteria is shown on the example of the Euler dynamic equation. The authors’ main tool is the Riccati transformation.

34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
39A12Discrete version of topics in analysis
39A10Additive difference equations
Full Text: DOI
[1] R.P. Agarwal, M. Bohner, D. O’Regan and A. Peterson, Dynamic equations on time scales : A survey , J. Comput. Appl. Math. 141 (2002), 1-26. · Zbl 1020.39008 · doi:10.1016/S0377-0427(01)00432-0
[2] E. Ak\in, L. Erbe, B. Kaymakçalan and A. Peterson, Oscillation results for a dynamic equation on a time scale , J. Differ. Equations Appl. 7 (2001), 793-810. · Zbl 1002.39024 · doi:10.1080/10236190108808303
[3] M. Bohner, O. Došlý and W. Kratz, An oscillation theorem for discrete eigenvalue problems , Rocky Mountain J. Math. 33 (2003), 1233-1260. · Zbl 1060.39003 · doi:10.1216/rmjm/1181075460
[4] M. Bohner and G.Sh. Guseinov, Improper integrals on time scales , Dynam. Systems Appl. 12 (2003), 45-66. · Zbl 1058.39011
[5] M. Bohner and A. Peterson, Dynamic equations on time scales : An introduction with applications , Birkhäuser, Boston, 2001. · Zbl 0978.39001
[6] O. Došlý and S. Hilger, A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales , J. Comput. Appl. Math. 141 (2002), 147-158. · Zbl 1009.34033 · doi:10.1016/S0377-0427(01)00442-3
[7] O. Došlý and R. Hilscher, Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales , J. Differ. Equations Appl. 7 (2001), 265-295. · Zbl 0989.34027 · doi:10.1080/10236190108808273
[8] L. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain , in Boundary value problems and related topics , Math. Comput. Modelling 32 (2000), 571-585. · Zbl 0963.34020 · doi:10.1016/S0895-7177(00)00154-0
[9] --------, Riccati equations on a measure chain , in Proceedings of dynamic systems and applications (G.S. Ladde, N.G. Medhin and M. Sambandham, eds.), Vol. 3, Dynamic Publishers, Atlanta, GA, 2001, pp. 193-199. · Zbl 1008.34006
[10] --------, Oscillation criteria for second order matrix dynamic equations on a time scale , J. Comput. Appl. Math. 141 (2002), 169-185. · Zbl 1017.34030 · doi:10.1016/S0377-0427(01)00444-7
[11] G.Sh. Guseinov and B. Kaymakçalan, On a disconjugacy criterion for second order dynamic equations on time scales , J. Comput. Appl. Math. 141 (2002), 187-196. · Zbl 1014.34023 · doi:10.1016/S0377-0427(01)00445-9
[12] S. Hilger, Analysis on measure chains - A unified approach to continuous and discrete calculus , Results Math. 18 (1990), 18-56. · Zbl 0722.39001 · doi:10.1007/BF03323153
[13] I.V. Kamenev, An integral criterion for oscillation of linear differential equations of second order , Mat. Zametki 23 (1978), 249-251. · Zbl 0386.34032
[14] H.J. Li, Oscillation criteria for second order linear differential equations , J. Math. Anal. Appl. 194 (1995), 312-321. · Zbl 0836.34033 · doi:10.1006/jmaa.1995.1295
[15] G. Zhang and S.S. Cheng, A necessary and sufficient oscillation condition for the discrete Euler equation , Panamer. Math. J. 9 (1999), 29-34. · Zbl 0960.39005