# zbMATH — the first resource for mathematics

$$L^p$$ eigenfunction bounds for the Hermite operator. (English) Zbl 1075.35020
The authors obtain $$L^{p}$$ eigenfunction bounds for the Hermite operator $$H=-\Delta+x^{2}$$ in $${\mathbb R}^{n}$$ and also for a larger class of related operator of the form $$H_{V}=-\Delta+V$$. The main results are the following.
Theorem 1. (i) The operators $$e^{itH}$$ satisfy$$\| e^{H}\|_{L^{1}\to L^{\infty}}\lesssim |\sin t|^{-n/2}.$$ (ii) Let $$V$$ be a potential that satisfies $$|\partial^{\alpha}V|\leq c_{\alpha}$$, $$|\alpha|\geq 2.$$ Then for $$|t|\ll 1$$, the operators $$e^{H}_{V}$$ satisfy $$\| e^{H}_{V}\|_{L^{1}\to L^{\infty}}\lesssim |t|^{-n/2}.$$
Theorem 2. (Strichartz estimate). Let $$V$$ be a potential that satisfies $$|\partial^{\alpha}V|\lesssim 2,\quad |\alpha|=1.$$
Then the solution $$u$$ to $$(i\partial_{t}-H_{V})u=f$$, $$u(0)=u_{0},$$ satisfies $\| u\|_{L^{p_{1}}(0,1;L^{q_{1}})}\lesssim\| u_{0}\|_{L^{2}}+\| f\|_{L^{p_{2}^{\prime}}(0,1;L^{q_{2}^{\prime}})},$ whenever the pairs $$(p_{1},q_{1})$$ and $$(p_{2},q_{2})$$ are subject to $\frac{2}{p}+\frac{n-1}{q}=\frac{n-1}{2},\quad2\leq p\leq\infty,\quad(n,p,q)\neq (2,2,\infty).$ Put $$D^{\text{int}}_{j}=\{|x|\in[\lambda(1-2^{-2(j-1)}),\lambda(1-2^{-2(j+1)})]\},\quad 1\leq 2^{j}\leq\lambda^{2/3}$$, $$D^{\text{bd}}=\{||x|-\lambda|\leq\lambda^{-1/3}\},$$ $$D^{\text{ext}}=\{|x|>\lambda+\lambda^{-1/3}/2\}$$, $\| f\|_{l^{\infty}_{\lambda}L^{p}}^{q}=\| f\|^{q}_{L^{p}(D^{\text{ext}})}+\| f\|^{q}_{L^{p}(D^{\text{bd}})}+\sum_{1\leq j}^{2^{j}\leq\lambda^{2/3}}\| f\|^{q}_{L^{p}(D^{\text{int}}_{j})},$
$y=\lambda^{-2/3}(\lambda^{2}-x^{2}),\quad \langle y\rangle_{-}=1+y_{-},\quad \langle y\rangle_{+}=1+y_{+}.$
Theorem 3 (Weighted $$L^{p}$$ eigenfunction bound). (i) Let $$2\leq p\leq 2(n+1)/(n-1)$$. Then $\|\lambda^{1/3-(n/3)(1/2-1/p)}\langle y\rangle_{+}^{-1/4+((n+3)/4)(1/2-a/p)}\langle y\rangle_{-}^{1-(n/2)(1/2-1/p)}\phi\|_{l^{\infty}_{\lambda}L^{p}} \lesssim \|\phi\|_{L^{2}}+\| (H-\lambda^{2})\phi\|_{L^{2}}.$
(ii) Let $$2(n+1)/(n-1)\leq p\leq\infty$$. Let $$N$$ be a positive integer. Then $\|\lambda^{1/3-n/3(1/2-1/p)}\langle y\rangle_{+}^{1/2-(n/2)(1/2-1/p)}\langle y\rangle_{-}^{N}P_{\lambda^{2}}\phi\|_{l^{\infty}_{\lambda}L^{p}}\lesssim\|\phi\|_{L^{2}},$ where $$P_{k}$$ is a spectral projector for $$H$$.
The authors get similar estimates for $$H_{V}$$ with a positive potential $$V$$ that satisfies $$V\sim |x|^{2}$$, $$|\nabla V|\sim |x|$$, and $$|\partial^{2}_{x}V|\lesssim 1$$.

##### MSC:
 35P05 General topics in linear spectral theory for PDEs 35B60 Continuation and prolongation of solutions to PDEs 35S05 Pseudodifferential operators as generalizations of partial differential operators
Full Text:
##### References:
 [1] G. E. Andrews, R. Askey, and R. Roy, Special Functions , Encyclopedia Math. Appl. 71 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0920.33001 [2] L. Escauriaza, Carleman inequalities and the heat operator , Duke Math. J. 104 (2000), 113–127. · Zbl 0979.35029 [3] L. Escauriaza and L. Vega, Carleman inequalities and the heat operator, II , Indiana Univ. Math. J. 50 (2001), 1149–1169. · Zbl 1029.35046 [4] M. V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations , Springer, Berlin, 1993. · Zbl 0782.34001 [5] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation , J. Funct. Anal. 133 (1995), 50–68. · Zbl 0849.35064 [6] D. Jerison, Carleman inequalities for the Dirac and Laplace operators and unique continuation , Adv. Math. 62 (1986), 118–134. · Zbl 0627.35008 [7] D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for SchrĂ¶dinger operators , with an appendix by E. M. Stein, Ann. of Math. (2) 121 (1985), 463–494. JSTOR: · Zbl 0593.35119 [8] G. E. Karadzhov, Riesz summability of multiple Hermite series in $$L^ p$$ spaces, C. R. Acad. Bulgare Sci. 47 (1994), 5–8. · Zbl 0829.40003 [9] M. Keel and T. Tao, Endpoint Strichartz estimates , Amer. J. Math. 120 (1998), 955–980. · Zbl 0922.35028 [10] H. Koch and D. Tataru, Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients , Comm. Pure Appl. Math. 54 (2001), 339–360. · Zbl 1033.35025 [11] –. –. –. –., Dispersive estimates for principally normal pseudodifferential operators , Comm. Pure Appl. Math. 58 (2005), 217–284. · Zbl 1078.35143 [12] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations , J. Funct. Anal. 130 (1995), 357–426. · Zbl 0846.35085 [13] H. F. Smith and C. D. Sogge, On the critical semilinear wave equation outside convex obstacles , J. Amer. Math. Soc. 8 (1995), 879–916. JSTOR: · Zbl 0860.35081 [14] C. D. Sogge, Strong uniqueness theorems for second order elliptic differential equations , Amer. J. Math. 112 (1990), 943–984. JSTOR: · Zbl 0734.35012 [15] ——–, Fourier Integrals in Classical Analysis , Cambridge Tracts in Math. 105 , Cambridge Univ. Press, Cambridge, 1993. [16] S. Thangavelu, Summability of Hermite expansions, I, II , Trans. Amer. Math. Soc. 314 (1989), 119–142., 143–170. JSTOR: · Zbl 0685.42015 [17] ——–, Lectures on Hermite and Laguerre Expansions , with a preface by R. S. Strichartz, Math. Notes 42 , Princeton Univ. Press, Princeton, 1993. · Zbl 0791.41030 [18] –. –. –. –., Hermite and special Hermite expansions revisited , Duke Math. J. 94 (1998), 257–278. · Zbl 0945.42014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.