×

zbMATH — the first resource for mathematics

On a diphasic low Mach number system. (English) Zbl 1075.35038
The author proposes a diphasic low Mach number (DLMN) system for the modelling of diphasic flows at low Mach number. This system filters out the acoustic waves but keeps all the informations coming from the thermodynamic as the equations of state and the entropy contrary to a standard incompressible diphasic Navier-Stokes system. Thus, the DLMN system is “between” the incompressible diphasic Navier-Stokes system and the compressible diphasic Navier-Stokes system. This DLMN system has good properties. For example, it predicts the dilation and the compression of a bubble under minimal thermodynamic hypothesis which are verified by a large class of generalized van der Waals equations of state. Moreover, the DLMN system is equivalent to a nonlinear heat equation when the two fluids are perfect gases and when the geometry is monodimensional. Using this property, it is possible to build a monodimensional entropic numerical scheme when the two fluids are perfect gases. Moreover, with appropriate modelling hypothesis – again satisfied by a large class of generalized van der Waals equations of state – the DLMN system degenerates (formally) toward the incompressible Navier-Stokes system for one of the two fluids.
The plan of this paper is the following: the second section is devoted to a formal derivation of the DLMN system, in the third section, some basic properties of the DLMN system are described. In the fourth section, the Lagrangian formulation of the DLMN system when each fluid is a perfect gas and when the geometry is monodimensional is considered. In the fifth section, an entropic scheme in monodimensional geometry is proposed. In the sixth section, numerical results are presented.

MSC:
35Q30 Navier-Stokes equations
76T10 Liquid-gas two-phase flows, bubbly flows
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
80A10 Classical and relativistic thermodynamics
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] R. Abgrall , R. Saurel , A multiphase Godunov method for compressible multifluid and multiphase flows . J. Comput. Phys. 150 425 - 467 ( 1999 ). Zbl 0937.76053 · Zbl 0937.76053
[2] G. Allaire , S. Clerc and S. Kokh , A five-equation model for the numerical simulation of interfaces in two-phase flows . C. R. Acad. Sci. Paris Ser. I 331 ( 2000 ) 1017 - 1022 . Zbl 1010.76055 · Zbl 1010.76055
[3] G. Allaire , S. Clerc and S. Kokh , A five-equation model for the simulation of interfaces between compressible fluids . J. Comput. Phys. 181 ( 2002 ) 577 - 616 . Zbl pre01845987 · Zbl 1169.76407
[4] Y.-H. Choi , C.L. Merkle , The Application of Preconditioning in Viscous Flows . J. Comput. Phys. 105 ( 1993 ) 207 - 223 . Zbl 0768.76032 · Zbl 0768.76032
[5] A.J. Chorin and J.E. Mardsen , A Mathematical Introduction to Fluid Mechanics . Springer-Verlag ( 1979 ). Zbl 0417.76002 · Zbl 0417.76002
[6] S. Dellacherie , On relaxation schemes for the multicomponent Euler system . ESAIM: M2AN 37 ( 2003 ) 909 - 936 . Numdam | Zbl 1070.76037 · Zbl 1070.76037
[7] S. Dellacherie , Dérivation du système diphasique bas Mach . Simulation numérique en géométrie monodimensionnelle. CEA report, ref. CEA-R- 6046 ( 2004 ).
[8] S. Dellacherie and A. Vincent , Zero Mach Number Diphasic Equations for the Simulation of Water-Vapor High Pressure Flows , in Proc. of the 11\({\mbox {th}}\) conference of the CFD Society of Canada, Vancouver ( 2003 ) 248 - 255 .
[9] P. Embid , Well-posedness of the nonlinear equations for zero Mach number combustion . Comm. Partial Differential Equations 12 ( 1987 ) 1227 - 1283 . Zbl 0632.76075 · Zbl 0632.76075
[10] D. Gueyffier , J. Li , A. Nadim , R. Scardovelli and S. Zaleski , Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows . J. Comput. Phys. 152 ( 1999 ) 423 - 456 . Zbl 0954.76063 · Zbl 0954.76063
[11] H. Guillard and A. Murrone , On the behavior of upwind schemes in the low Mach number limit: II . Godunov type schemes. Comput. Fluids 33 ( 2004 ) 655 - 675 . Zbl 1049.76040 · Zbl 1049.76040
[12] H. Guillard and C. Viozat , On the behaviour of upwind schemes in the low Mach number limit . Comput. Fluids 28 ( 1999 ) 63 - 86 . Zbl 0963.76062 · Zbl 0963.76062
[13] F.H. Harlow and J.E. Welch , Numerical calculation of time-dependent viscous incompressible flow of fluid with free interface . Phys. Fluids 8 ( 1965 ) 2182 - 2189 . · Zbl 1180.76043
[14] D. Jamet , O. Lebaigue , N. Coutris and J.M. Delhaye , The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change . J. Comput. Phys. 169 ( 2001 ) 624 - 651 . Zbl 1047.76098 · Zbl 1047.76098
[15] D. Juric and G. Tryggvason , Computations of boiling flows . Int. J. Multiphase Flow 24 ( 1998 ) 387 - 410 . Zbl 1121.76455 · Zbl 1121.76455
[16] S. Kokh , Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d’interface . Ph.D. thesis of Paris VI University ( 2001 ).
[17] B. Lafaurie , C. Nardone , R. Scardovelli , S. Zaleski and G. Zanetti , Modelling merging and fragmentation in multiphase flows with SURFER . J. Comput. Phys. 113 ( 1994 ) 134 - 147 . Zbl 0809.76064 · Zbl 0809.76064
[18] F. Lagoutière , Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants . Ph.D. thesis of Paris VI University ( 2000 ).
[19] D. Lakehal , M. Meier and M. Fulgosi , Interface tracking towards the direct numerical simulation of heat and mass transfer in multiphase flow . Internat. J. Heat Fluid Flow 23 ( 2002 ) 242 - 257 .
[20] J.M. Le Corre , E. Hervieu , M. Ishii and J.M. Delhaye , Benchmarking and improvements of measurement techniques for local time-averaged two-phase flow parameters . Fourth International Conference on Multiphase Flows (ICMF 2001), New-Orleans, USA ( 2001 ).
[21] A. Majda , Equations for low mach number combustion . Center of Pure and Applied Mathematics, University of California at Berkeley, report No. 112 ( 1982 ).
[22] A. Majda and J.A. Sethian , The derivation and numerical solution of the equations for zero Mach number combustion . Combust. Sci. Tech. 42 ( 1985 ) 185 - 205 .
[23] W. Mulder , S. Osher and J.A. Sethian , Computing interface motion in compressible gas dynamics . J. Comput. Phys. 100 ( 1992 ) 209 - 228 . Zbl 0758.76044 · Zbl 0758.76044
[24] S. Osher , M. Sussman and P. Smereka , A level set approach for computing solutions to incompressible two-phase flow . J. Comput. Phys. 114 ( 1994 ) 146 - 159 . Zbl 0808.76077 · Zbl 0808.76077
[25] S. Paolucci , On the filtering of sound from the Navier-Stokes equations . Sandia National Laboratories report SAND 82 - 8257 ( 1982 ).
[26] J.A. Sethian , Level Set Methods . Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press ( 1996 ). MR 1409367 | Zbl 0859.76004 · Zbl 0859.76004
[27] K.M. Shyue , A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state . J. Comput. Phys. 156 ( 1999 ) 43 - 88 . Zbl 0957.76039 · Zbl 0957.76039
[28] G. Tryggvasson and S.O. Unverdi , A front-tracking method for viscous, incompressible, multi-fluid flows . J. Comput. Phys. 100 ( 1992 ) 25 - 37 . Zbl 0758.76047 · Zbl 0758.76047
[29] E. Turkel , Review of preconditioning methods for fluid dynamics . Appl. Numer. Math. 12 ( 1993 ) 257 - 284 . Zbl 0770.76048 · Zbl 0770.76048
[30] S.W.J. Welch and J. Wilson , A volume of fluid based method for fluid flows with phase change . J. Comput. Phys. 160 ( 2000 ) 662 - 682 . Zbl 0962.76068 · Zbl 0962.76068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.