zbMATH — the first resource for mathematics

Sharp regularity results for Coulombic many-electron wave functions. (English) Zbl 1075.35063
Summary: We show that electronic wave functions \(\psi\) of atoms and molecules have a representation \(\psi = \mathcal F \phi\), where \(\mathcal F\) is an explicit universal factor, locally Lipschitz, and independent of the eigenvalue and the solution \(\psi\) itself, and \(\varphi\) has second derivatives which are locally in \(L^{\infty}\). This representation turns out to be optimal as can already be demonstrated with the help of hydrogenic wave functions. The proofs of these results are, in an essential way, based on a new elliptic regularity result which is of independent interest. Some identities that can be interpreted as cusp conditions for second order derivatives of \(\psi\) are derived.

35Q40 PDEs in connection with quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81V45 Atomic physics
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI arXiv
[1] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. study ed., Texts and Monographs in Physics, Berlin: Springer- Verlag, 1987 · Zbl 0619.47005
[2] Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, Vol. 19, Providence, RI:American Mathematical Society, 1998 · Zbl 0902.35002
[3] Fock, V.: On the Schrödinger equation of the helium atom. I, II. Norske Vid. Selsk. Forh., Trondheim 31, no. 22, 7 pp.; no. 23, 8 (1954)
[4] Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: Analyticity of the density of electronic wavefunctions. Ark. Mat. 42, 87-106 (2004) · Zbl 1068.35118
[5] Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: The electron density is smooth away from the nuclei. Communi. Math. Phys. 228, no. 3, 401-415 (2002) · Zbl 1005.81095
[6] Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: On the regularity of the density of electronic wavefunctions. In Mathematical results in quantum mechanics (Taxco, 2001), Contemp. Math., Vol. 307, Providence, RI: Amer. Math. Soc., pp. 143-148 (2002) · Zbl 1041.81104
[7] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics, Berlin: Springer-Verlag, 2001, Reprint of the 1998 edition · Zbl 1042.35002
[8] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Nadirashvili, N.: Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets. Comm. Partial Differ. Eqs. 20 no. 7-8, 1241-1273 (1995) · Zbl 0846.35036
[9] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2, no. 1, 77-100 (2001) · Zbl 0985.81133
[10] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Stremnitzer, H.: Local properties of Coulombic wave functions. Commun. Math. Phys. 163, no. 1, 185-215 (1994) · Zbl 0812.35105
[11] Hörmander, L.: Linear partial differential operators. Berlin: Springer Verlag, 1976 · Zbl 0321.35001
[12] Hylleraas, E.A.: The Schrödinger Two-Electron Atomic Problem. Adv. in Quantum Chemi. 1, 1-33 (1964)
[13] Kato, T.: On the eigenfunctions of many-particle systems in quantum mechanics. Comm. Pure Appl. Math. 10, 151-177 (1957) · Zbl 0077.20904
[14] Kato, T.: Perturbation theory for linear operators. Classics in Mathematics, Berlin: Springer-Verlag, 1995, Reprint of the 1980 edition · Zbl 0435.47001
[15] Lieb, E.H., Loss, M.: Analysis. second ed., Graduate Studies in Mathematics, Vol. 14, Providence, RI: American Mathematical Society, 2001 · Zbl 0966.26002
[16] Morgan III, J.D.: Convergence properties of Fock?s expansion for S-state eigenfunctions of the helium atom. Theoret. Chim. Acta 69, no. 3, 181-223 (1986)
[17] Morgan III, J.D., Myers, C.R, Sethna, J.P., Umrigar, C.J.: Fock?s expansion, Kato?s cusp conditions, and the exponential ansatz. Phys. Rev. A (3) 44, no. 9, 5537-5546 (1991)
[18] Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], 1978 · Zbl 0401.47001
[19] Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7, no. 3, 447-526 (1982) · Zbl 0524.35002
[20] Simon, B.: Erratum: ?Schrödinger semigroups?. Bull. Amer. Math. Soc. (N.S.) 11, no. 2, 426 (1984)
[21] Simon, B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41, no. 6, 3523-3555 (2000) · Zbl 0981.81025
[22] Thirring, W.: A course in mathematical physics. Vol. 3, Quantum mechanics of atoms and molecules, Translated from the German by E.M. Harrell, Lecture Notes in Physics, 141. New York: Springer-Verlag, 1981 · Zbl 0462.46046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.