Tian, Lixin; Yin, Jiuli Stability of multi-compacton solutions and Bäcklund transformation in \(K(m,n,1)\). (English) Zbl 1075.37028 Chaos Solitons Fractals 23, No. 1, 159-169 (2005). Summary: We introduce a fifth-order \(K(m,n,1)\) equation with nonlinear dispersion to obtain multi-compacton solutions by the Adomian decomposition method. Using the homogeneous balance method, we derive a Bäcklund transformation of a special equation \(K(2,2,1)\) to determine some solitary solutions of the equation. To study the stability of multi-compacton solutions in \(K(m,n,1)\) and to obtain some conservation laws, we present a similar fifth-order equation derived from Lagrangian. We finally show the linear stability of all obtained multi-compacton solutions. Cited in 10 Documents MSC: 37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems 35Q53 KdV equations (Korteweg-de Vries equations) 35B35 Stability in context of PDEs 35A30 Geometric theory, characteristics, transformations in context of PDEs 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems Keywords:Adomian decomposition method; solitary solutions PDF BibTeX XML Cite \textit{L. Tian} and \textit{J. Yin}, Chaos Solitons Fractals 23, No. 1, 159--169 (2005; Zbl 1075.37028) Full Text: DOI References: [1] Rosenau, P.; Hyman, M., Phys. Rev. Lett., 70, 564 (1993) [2] Tian, L.; Yin, J., Chaos, Solitons & Fractals, 20, 289 (2004) [3] Dey, B., Phys. Rev. E, 57, 4733 (1998) [4] Yin, J.; Tian, L., J. Jiang. Univ., 5, 10 (2003) [5] Rosenau, P., Phys. Rev. Lett. A, 230, 305 (1997) [6] Rosenau, P., Phys. Rev. Lett. A, 275, 193 (2000) [7] Dinda, P. T.; Remoissent, M., Phys. Rev. E, 60, 6218 (1999) [8] Rosneau, P.; Levy, D., Phys. Rev. Lett. A, 252, 297 (1999) [9] Karpman, V. I., Rev. Lett. A, 210, 77 (1996) [10] Dey, B.; Kare, A., J .Phys. A: Math. Gen., 33, 5335 (2000) [11] Dey, B., Phys. Rev. E, 58, 2741 (1998) [12] Wazwaz, A. M., Chaos, Solitons & Fractals, 13, 321 (2002) · Zbl 1028.35131 [13] Yan, Z., Chaos, Solitons & Fractals, 14, 1151 (2002) [14] Nakao, T.; Wadati, M., Chaos, Solitons & Fractals, 4, 701 (1994) [15] Dey, B.; Kare, A., Rev. Lett. A, 223, 449 (1996) [16] Chen, Y.; Li, B.; Zhang, H., Chaos, Solitons & Fractals, 17, 693 (2003) [17] Yang, L.; Zhang, F.; Wang, Y., Chaos, Solitons & Fractals, 13, 337 (2003) [18] Elwakil, S. A.; FlL-labany, S. K., Chaos, Solitons & Fractals, 19, 1083 (2004) [19] Wang, M.; Wang, Y., Rev. Lett. A, 287, 211 (2001) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.