×

zbMATH — the first resource for mathematics

Quenched large deviations for diffusions in a random Gaussian shear flow drift. (English) Zbl 1075.60508
The paper considers particular diffusion processes in \(\mathbb R^2\) with a random drift. The assumed processes fulfill an stochastic differential equation with a solution expressed by a couple of Brownian motions and a stationary Gaussian process which are mutually independent. The authors present asymptotics for such processes, especially, they derive the large deviation law for them.

MSC:
60F10 Large deviations
60J60 Diffusion processes
60K37 Processes in random environments
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adler, R.J., On excursion sets, tube formulas, and maxima of random fields, Ann. appl. probab., 10, 1, 1-74, (2000) · Zbl 1171.60338
[2] Avellaneda, M.; Majda, A., Mathematical models with exact renormalization for turbulent transport, Commun. math. phys., 131, 381-429, (1990) · Zbl 0703.76042
[3] Avellaneda, M.; Majda, A., Mathematical models with exact renormalization for turbulent transport II, Commun. math. phys., 146, 139-204, (1992) · Zbl 0754.76046
[4] Carmona, R., 1997. Transport properties of Gaussian velocity fields. In: Real and Stochastic Analysis. Probability and Stochastics Series. CRC, Boca Raton, FL, pp. 9-63. · Zbl 0897.60051
[5] Carmona, R.; Xu, L., Homogenization for time dependent 2-D incompressible Gaussian flows, Ann. appl. probab., 7, 1, 265-279, (1997) · Zbl 0879.60063
[6] Castell, F.; Pradeilles, F., Annealed large deviations for diffusions in a random Gaussian shear flow drift, Stochast. proc. appl., 94, 171-197, (2001) · Zbl 1051.60028
[7] Dembo, A.; Zeitouni, O., Large deviations techniques and applications, Application of mathematics, Vol. 38, (1998), Springer New York
[8] Gärtner, J.; König, W., Moment asymptotics for the continuous parabolic Anderson model, Ann. appl. probab., 10, 1, 92-217, (2000) · Zbl 1171.60359
[9] Gärtner, J.; König, W.; Molchanov, S.A., Almost sure asymptotics for the continuous parabolic Anderson model, Probab. theory related fields, 118, 4, 547-573, (2000) · Zbl 0972.60056
[10] Landim, C.; Olla, S.; Yau, H.T., Convection – diffusion equation with space – time ergodic random flow, Probab. theory related fields, 112, 2, 203-220, (1998) · Zbl 0914.60070
[11] Ledoux, M., Talagrand, M., 1991. Probability in Banach spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 23. Springer, Berlin.
[12] Olla, S., 1994. Homogenization of diffusion processes in random fields. Publications de l’Ecole Doctorale de l’Ecole Polytechnique.
[13] Stein, E.M., Singular integral and differentiability properties of functions, Princeton mathematical series, Vol. 30, (1970), Princeton University Press Princeton, NJ
[14] Sznitman, A.S., 1998. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin. · Zbl 0973.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.