zbMATH — the first resource for mathematics

An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter. (English) Zbl 1075.60530
Stochastic calculus for fractional Brownian motion \(B^H(t)\) with arbitrary Hurst parameter \(H\in (0,1)\) is developed. The fractional Brownian motion and fractional white noise are constructed on the classical white noise space. The fractional Itô integral is defined by means of the Wick product as a Pettis type integral on the space of Hida distributions. White noise techniques are used to prove the generalized Itô formula for functional \(F(B^H(t))\) where \(F\) is a tempered distribution. As an application the Tanaka formula is proven. Finally, a Clarc-Okone formula for Donsker’s delta function of \(B^H(t)\) is given and an integral representation of the local time of \(B^H(t)\) is established.

60H05 Stochastic integrals
60H40 White noise theory
60G20 Generalized stochastic processes
Full Text: DOI
[1] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than \(12\), Stochastic process. appl., 86, 121-139, (2000) · Zbl 1028.60047
[2] Alòs, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. probab., 29, 766-801, (2001) · Zbl 1015.60047
[3] Alòs, E., Nualart, D., 2000. Stochastic integration with respect to the fractional Brownian motion. Preprint, Barcelona.
[4] Berman, S.M., Self-intersections and local nondeterminism of Gaussian processes, Ann. probab., 19, 160-191, (1991) · Zbl 0728.60037
[5] Carmona, P., Coutin, L., Montseny, G., 2000. Stochastic integration with respect to fractional Brownian motion. Preprint. · Zbl 1016.60043
[6] Coutin, L., Nualart, D., Tudor, C.A., 2001. Tanaka formula for the fractional Brownian motion. Preprint, Barcelona. · Zbl 1053.60055
[7] Decreusefond, L.; Üstünel, A.S., Stochastic analysis of the fractional Brownian motion, Potential anal., 10, 177-214, (1998) · Zbl 0924.60034
[8] Duncan, T.E.; Hu, Y.; Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion. I. theory, Sicon, 38, 582-612, (2000) · Zbl 0947.60061
[9] Elliott, R.J., van der Hoek, J., 2001. Fractional Brownian motion and financial modelling. In: Kohlmann, M., Tang, S. (Eds.), Proceedings of a Workshop on Mathematical Finance, Konstanz Oct. 5-7, 2000, Birkhäuser, Basel, pp. 140-150. · Zbl 0996.91056
[10] Gel’fand, I.M., Vilenkin, N.Y., 1964. Generalized Functions, Vol. 4, Academic Press, New York.
[11] Hida, T., Brownian motion, (1980), Springer Berlin · Zbl 0432.60002
[12] Hille, E.; Phillips, R.S., Functional analysis and semigroups, (1957), American Mathematical Society Providence, RI · Zbl 0078.10004
[13] Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T., Stochastic partial differential equations. A modeling, white noise functional approach, (1996), Birkhäuser Boston · Zbl 0860.60045
[14] Hu, Y., Øksendal, B., 1999. Fractional white noise calculus and applications to finance. Preprint, Oslo.
[15] Hu, Y., Øksendal, B., 2000. Chaos expansion of local time of fractional Brownian motions. Preprint, Oslo.
[16] Hu, Y., Øksendal, B., 2001. Weighted local time for fractional Brownian motion and applications to finance. Preprint, Oslo.
[17] Karatzas, I.; Shreve, S.E., Brownian motion and stochastic calculus, (1991), Springer New York · Zbl 0734.60060
[18] Kubo, I., 1983. Itô formula for generalized Brownian functionals. In: Kallianpur, G. (Ed.), Lecture Notes in Control and Information Sciences, Vol. 49. Springer, Berlin, pp. 155-166.
[19] Kuo, H.-H., White noise distribution theory, (1996), CRC Press Boca Raton, FL · Zbl 0853.60001
[20] Lin, S.J., Stochastic analysis of fractional Brownian motion, Stoch. stoch. rep., 55, 121-140, (1995) · Zbl 0886.60076
[21] Lindstrøm, T., Fractional Brownian fields as integrals of white noise, Bull. London math. soc., 25, 83-88, (1993) · Zbl 0741.60031
[22] Ma, J.; Protter, P.; Yong, Y., Solving forward – backward stochastic differential equations explicitly—a four step scheme, Probab. theory related fields, 98, 339-359, (1994) · Zbl 0794.60056
[23] Mandelbrot, B.; Van Ness, J., Fractional Brownian motions, fractional noises and applications, SIAM rev., 10, 422-437, (1968) · Zbl 0179.47801
[24] Nualart, D., The Malliavin calculus and related topics, (1995), Springer New York · Zbl 0837.60050
[25] Pipiras, V.; Taqqu, M.S., Integral questions related to fractional Brownian motion, Probab. theory related fields, 118, 251-291, (2000) · Zbl 0970.60058
[26] Privault, N., Skorohod stochastic integration with respect to non-adapted processes on Wiener space, Stoch. stoch. rep., 65, 13-39, (1998) · Zbl 0918.60038
[27] Rogers, L.C.G., Arbitrage with fractional Brownian motion, Math. finance, 7, 95-105, (1997) · Zbl 0884.90045
[28] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives. theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[29] Samorodnitsky, G.; Taqqu, M.S., Stable non-Gaussian processes: stochastic models with infinite variance, (1994), Chapman & Hall London · Zbl 0925.60027
[30] Taylor, M.E., Partial differential equations I: basic theory, (1996), Springer New York
[31] Widder, D.V., Positive temperatures on an infinite rod, Trans. amer. math. soc., 55, 85-95, (1944) · Zbl 0061.22303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.