Rudnicki, Ryszard Long-time behaviour of a stochastic prey–predator model. (English) Zbl 1075.60539 Stochastic Processes Appl. 108, No. 1, 93-107 (2003). A stochastic version \[ dX_ {t} = (\alpha X_ {t} -\beta X_ {t}Y_ {t} - \mu X^ 2_ {t})\,dt + \sigma X_ {t}\,dW_ {t}, \quad dY_ {t} = (-\gamma Y_ {t} + \delta X_ {t}Y_ {t} - \nu Y^ 2_ {t})\,dt + \rho Y_ {t}\,dW_ {t}\tag{1} \] of the Lotka-Volterra system is studied, where \(\alpha \), \(\beta \), \(\gamma \), \(\delta \), \(\mu \), \(\nu \), \(\rho \) and \(\sigma \) are positive constants, and \(W\) is a standard Wiener process. By setting \(X_ {t} = \exp (\xi _ {t})\) and \(Y_ {t} = \exp (\eta _ {t})\) the equations (1) are transformed to \[ d\xi _ {t} = (\alpha - \sigma ^ 2/2 - \mu e^ {\xi _ {t}} -\beta e^ {\eta _ {t}})\,dt + \sigma \,dW_ {t},\quad d\eta _ {t} = (-\gamma -\rho ^ 2/2 + \delta e^ {\xi _ {t}} - \nu e^ {\eta _ {t}})\,dt + \rho \,dW_ {t}.\tag{2} \] Let us set \(c_ 1 = \alpha - \sigma ^ 2/2\), \(c_ 2 = \gamma + \rho ^ 2 /2\). Let \((\xi ,\eta )\) be an arbitrary solution to (2). It is proven that if \(c_ 1>0\) and \(\mu c_ 2 <\delta c_ 1\), then there exists a unique invariant probability measure \(m^ *\) for (2) and the distribution of \((\xi _ {t},\eta _ {t})\) converges to \(m^ *\) as \(t\to \infty \) in the total variation norm. If \(c_ 1>0\) and \(\mu c_ 2 >\delta c_ 1\), then \(\lim _ {t\to \infty } \eta _ {t} = -\infty \) almost surely, while the law of \(\xi _ {t}\) converges weakly to a measure having density \(C\exp (2c_ 1\sigma ^ {-2}x - 2\mu \sigma ^ {-2}e^ {x})\). Finally, if \(c_ 1<0\), then both \(\xi _ {t}\) and \(\eta _ {t}\) converge to \(-\infty \) as \(t\to \infty \) almost surely. In the course of proofs, it is shown that the laws of both \((\xi _ {t},\eta _ {t})\) and \(m^ *\) have density with respect to two-dimensional Lebesgue measure, hence recent results on long-time behaviour of integral Markov semigroups [see e.g.K.Pichór and R.Rudnicki, J. Math. Anal. Appl. 249, 668–685 (2000; Zbl 0965.47026)] may be applied. Reviewer: Jan Seidler (Praha) Cited in 1 ReviewCited in 133 Documents MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 47D07 Markov semigroups and applications to diffusion processes 60J60 Diffusion processes 92D25 Population dynamics (general) Keywords:stochastic Lotka-Volterra equations; Markov semigroups; invariant measure; asymptotic stability Citations:Zbl 0965.47026 PDF BibTeX XML Cite \textit{R. Rudnicki}, Stochastic Processes Appl. 108, No. 1, 93--107 (2003; Zbl 1075.60539) Full Text: DOI References: [2] Arnold, L.; Horsthemke, W.; Stucki, J. W., The influence of external real and white noise on the Lotka-Volterra model, Biomedical J., 21, 451-471 (1979) · Zbl 0433.92019 [3] Ben Arous, G.; Léandre, R., Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Related Fields, 90, 377-402 (1991) · Zbl 0734.60027 [4] Chessa, S.; Fujita Yashima, H., The stochastic equation of predator-prey population dynamics (Italian), Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 5, 8, 789-804 (2002) · Zbl 1177.60057 [5] Foguel, S. R., Harris operators, Israel J. Math., 33, 281-309 (1979) · Zbl 0434.60012 [6] Khasminskiı̆, R. Z.; Klebaner, F. C., Long term behaviour of solutions of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab., 11, 953-963 (2001) · Zbl 1061.34513 [7] Komorowski, T.; Tyrcha, J., Asymptotic properties of some Markov operators, Bull. Polish Acad. Sci. Math., 37, 221-228 (1989) · Zbl 0767.47012 [8] Lasota, A.; Mackey, M. C., Chaos, fractals and noise. Stochastic aspects of dynamics, Springer Applied Mathematical Sciences, Vol. 97 (1994), Springer: Springer New York · Zbl 0784.58005 [9] Malliavin, P., Stochastic calculus of variations and hypoelliptic operators, (Itô, K., Proceedings of the International Symposium on Stochastic Differential Equations of Kyoto 1976 (1978), Wiley: Wiley New York), 195-263 [10] Malliavin, P., \(C^k\)-hypoellipticity with degeneracy, (Friedman, A.; Pinsky, M., Stochastic Analysis (1978), Academic Press: Academic Press New York), 199-214 · Zbl 0449.58022 [12] Pichór, K.; Rudnicki, R., Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215, 56-74 (1997) · Zbl 0892.35072 [13] Pichór, K.; Rudnicki, R., Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249, 668-685 (2000) · Zbl 0965.47026 [14] Rudnicki, R., On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad.: Math., 43, 245-262 (1995) · Zbl 0838.47040 [17] Volterra, V., Leçons sur la théorie mathematique de la lutte pour la vie (1931), Gauthier-Villar: Gauthier-Villar Paris · JFM 57.0466.02 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.