zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient method for decomposition of regular structures using graph products. (English) Zbl 1075.74539
Summary: In this paper an efficient method is presented for calculating the eigenvalues of regular structural models. A structural model is called regular if they can be viewed as the direct or strong Cartesian product of some simple graphs known as their generators. The eigenvalues of the adjacency and Laplacian matrices for a regular graph model are easily obtained by the evaluation of eigenvalues of its generators. The second eigenvalue of the Laplacian of a graph is also obtained using a much faster and much simple approach than the existing methods.

74H15Numerical approximation of solutions for dynamical problems in solid mechanics
74H45Vibrations (dynamical problems in solid mechanics)
74S30Other numerical methods in solid mechanics
05C90Applications of graph theory
Full Text: DOI