zbMATH — the first resource for mathematics

Stability of large amplitude Ekman-Hartmann boundary layers in MHD: the case of ill-prepared data. (English) Zbl 1075.76033
Summary: We study an incompressible highly rotating fluid submitted to a high magnetic field between two planes with a Dirichlet boundary condition. We investigate the nonlinear stability of Ekman-Hartmann boundary layers under a spectral assumption for general initial data; this means that the data can be chosen as an arbitrary (but smooth enough) three-dimensional divergence-free vector field independent of the small parameter.

76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E07 Rotation in hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76W05 Magnetohydrodynamics and electrohydrodynamics
76U05 General theory of rotating fluids
35B35 Stability in context of PDEs
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI
[1] Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990) · Zbl 0705.35070
[2] Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels. [Current Scholarship]. Paris: InterEditions, 1991
[3] Allen, L., Bridges, T.J.: Hydrodynamic stability of the ekman boundary layer including interaction with a compliant surface: a numerical framework. European J. Mech. B Fluids 22, 239–258 (2003) · Zbl 1033.76015 · doi:10.1016/S0997-7546(03)00036-0
[4] Babin, A., Mahalov, A., Nicolaenko, B.: Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. European J. Mech. B Fluids 15(3), 291–300 (1996) · Zbl 0882.76096
[5] Babin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3), 1133–1176 (1999) · Zbl 0932.35160
[6] Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Ekman boundary layers in rotating fluids. ESAIM Control Optim. Calc. Var. 8, 441–466 (electronic), 2002. A tribute to J. L. Lions · Zbl 1070.35505
[7] Chemin, J.-Y.: Perfect incompressible fluids. In: Volume 14 of Oxford Lecture Series in Mathematics and its Applications. New York: The Clarendon Press Oxford University Press, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie
[8] Desjardins, B., Dormy, E., Grenier, E.: Stability of mixed Ekman-Hartmann boundary layers. Nonlinearity 12(2), 181–199 (1999) · Zbl 0939.35151 · doi:10.1088/0951-7715/12/2/001
[9] Desjardins, B., Dormy. E., Grenier, E.: Instability of Ekman-Hartmann boundary layers, with application to the fluid flow near the core mantle boundary. Physics of the Earth and Planetary Interior 124, 283–294 (2001) · doi:10.1016/S0031-9201(01)00210-2
[10] Desjardins, B., Grenier, E.: Linear instability implies nonlinear instability for various boundary layers. Ann. Inst. H. Poincaré Anal. Non-Lineaire 20(1), 87–106 (2000) · Zbl 1114.76024 · doi:10.1016/S0294-1449(02)00009-4
[11] Dormy, E.: Modélisation numérique de la dynamo terrestre. PhD thesis, Institut de Physique du Globe, 1997
[12] Gardner, R.A., Zumbrun, K.: The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51(7), 797–855 (1998) · Zbl 0933.35136 · doi:10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1
[13] Gerard-Varet, D.: A geometric optics type approach to fluid boundary layers. Comm. Partial Differ. Eqs. 28(9–10), 1605–1626 (2003) · Zbl 1125.35397
[14] Gisclon, M., Serre, D.: Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319(4), 377–382 (1994) · Zbl 0808.35075
[15] Grenier, E., Guès, O.: Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differ. Eqs. 143(1), 110–146 (1998) · Zbl 0896.35078 · doi:10.1006/jdeq.1997.3364
[16] Grenier, E., Masmoudi, N.: Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differ. Eqs. 22(5–6), 953–975 (1997) · Zbl 0880.35093
[17] Kapitula, T., Sandstede, B.: Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D 124(1–3), 58–103 (1998) · Zbl 0935.35150
[18] Kato, T., Fujita, H.: On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243–260 (1962) · Zbl 0114.05002
[19] Kreiss, H.-O., Lorenz, J.: Initial-boundary value problems and the Navier-Stokes equations. Boston, MA: Academic Press Inc., 1989 · Zbl 0689.35001
[20] Masmoudi, N.: Ekman layers of rotating fluids: the case of general initial data. Comm. Pure Appl. Math. 53(4), 432–483 (2000) · Zbl 1047.76124 · doi:10.1002/(SICI)1097-0312(200004)53:4<432::AID-CPA2>3.0.CO;2-Y
[21] Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. To appear in Mem. of the Amer. Math. Soc. available at http://www.ufr-mi.u-bordeaux.fr/\(\sim\) metivier/preprints. html, Preprint, 2002
[22] Rousset, F.: Large mixed Ekman-Hartmann boundary layers in magnetohydrodynamics. Nonlinearity 17(2), 503–518 (2004) · Zbl 1054.35069 · doi:10.1088/0951-7715/17/2/008
[23] Rousset, F.: Stability of large Ekman boundary layers in rotating fluids. Arch. Rat. Mech. Anal. 172(2), 213–245 (2004) · Zbl 1117.76026 · doi:10.1007/s00205-003-0302-5
[24] Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36(5), 635–664 (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.