zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-objective fuzzy inventory model with three constraints: a geometric programming approach. (English) Zbl 1075.90005
Summary: A multi-item multi-objective inventory model with shortages and demand dependent unit cost has been formulated along with storage space, number of orders and production cost restrictions. In most of the real world situations, the cost parameters, the objective functions and constraints of the decision makers are imprecise in nature. Hence the cost parameters, the objective functions and constraints are imposed here in fuzzy environment. This model has been solved by geometric programming method. The results for the model without shortages are obtained as a particular case. The sensitivity analysis has been discussed for the change of the cost parameters. The models are illustrated with numerical examples.

MSC:
90B05Inventory, storage, reservoirs
90C70Fuzzy programming
90B50Management decision making, including multiple objectives
WorldCat.org
Full Text: DOI
References:
[1] Abou-El-Ata, M. O.; Fergany, H. A.; El-Wakeel, M. F.: Probabilistic multi-item inventory model with varying order cost under two restrictionsa geometric programming approach. Internat. J. Production econom. 83, 223-231 (2003)
[2] Abou-El-Ata, M. O.; Kotb, K. A. M.: Multi-item EOQ inventory model with varying holding cost under two restrictionsa geometric programming approach. Production planning control 8, 608-611 (1997)
[3] Bellman, R. E.; Zadeh, L. A.: Decision-making in a fuzzy environment. Management sci. 17, No. 4, B141-B164 (1970) · Zbl 0224.90032
[4] Bortolan, G.; Degani, R. A.: A review of some methods for ranking fuzzy subsets. Fuzzy sets and systems 15, 1-19 (1985) · Zbl 0567.90056
[5] Chen, C. K.: Optimal determination of quality level, selling quantity and purchasing price for intermediate firms. Production planning control 11, No. 7, 706-712 (2000)
[6] Cheng, T. C. E.: An economic production quantity model with demand-dependent unit cost. European J. Oper. res. 40, 252-256 (1989) · Zbl 0665.90017
[7] Das, K.; Roy, T. K.; Maiti, M.: Multi-item inventory model with quantity dependent inventory costs and demand-dependent unit cost under imprecise objective and restrictionsa geometric programming approach. Production planning control 11, No. 8, 781-788 (2000)
[8] De, S.; Goswami, A.: A replenishment policy for items with finite production rate and fuzzy deterioration rate. Opsearch 38, No. 4, 419-430 (2001)
[9] D. Dubois, H. Prade, A unified view of ranking techniques for fuzzy numbers, Proc. IEEE Internat. Conf. on Fuzzy Systems, Seoul, 1999, pp. 1328 -- 1333.
[10] Duffin, R. J.; Peterson, E. L.; Zener, C.: Geometric programming-theory and application. (1967) · Zbl 0171.17601
[11] Hadley, G.; Whitin, T. M.: Analysis of inventory systems. (1958) · Zbl 0133.42901
[12] Hariri, A. M. A.; Abou-El-Ata, M. O.: Multi-item production lot-size inventory model with varying order cost under a restrictiona geometric programming approach. Production planning control 8, 179-182 (1997)
[13] Jung, H.; Klein, C. M.: Optimal inventory policies under decreasing cost functions via geometric programming. European J. Oper. res. 132, 628-642 (2001) · Zbl 1024.90004
[14] Kaufman, A.; Gupta, M. M.: Fuzzy mathematical models in engineering & management sciences. (1988)
[15] Liou, T. S.; Wang, M. J.: Ranking fuzzy numbers with integral values. Fuzzy sets and systems 50, 247-255 (1992) · Zbl 1229.03043
[16] Luo, X.; Lee, J. H.; Leung, H.; Jennings, N. R.: Prioritised fuzzy constraint satisfaction problemsaxioms. Instantiation and validation, fuzzy sets and systems 136, 151-188 (2003) · Zbl 1024.68097
[17] Park, K. S.: Fuzzy set theoretic interpretation of economic order quantity. IEEE trans. Systems man cybernet. 17, No. 6, 1082-1084 (1987)
[18] Raymond, F. E.: Quantity and economic in manufacturer. (1931)
[19] Roy, T. K.; Maiti, M.: A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. European J. Oper. res. 99, 425-432 (1997) · Zbl 0953.90501
[20] Saade, J. J.; Schwarzlander, H.: Ordering fuzzy sets over the real linean approach based on decision making under uncertainty. Fuzzy sets and systems 50, 237-246 (1992)
[21] Silver, E. A.; Peterson, R.: Decision systems for inventory management and production planning. (1985)
[22] Sommer, G.: Fuzzy inventory scheduling. Applied systems and cybernetics, vol. VI (1981)
[23] Tanaka, H.; Okuda, T.; Asai, K.: On fuzzy mathematical programming. J. cybernet. 3, No. 4, 37-46 (1974) · Zbl 0297.90098
[24] Tiwari, R. N.; Dharmar, S.; Rao, J. R.: Fuzzy goal programming-an additive model. Fuzzy sets and systems 24, 27-34 (1987) · Zbl 0627.90073
[25] Wang, X.; Kerre, E.: Resonable properties for the ordering of fuzzy quantities (2 parts). Fuzzy sets and systems 118, 375-406 (2001)
[26] Werners, B.: Interactive multiple objective programming subject to flexible constraints. European J. Oper. res. 31, 342-349 (1987) · Zbl 0636.90085
[27] Worral, B. M.; Hall, M. A.: The analysis of an inventory control model using posynomial geometric programming. Internat. J. Production res. 20, 657-667 (1982)
[28] Yager, R. R.: A procedure for ordering fuzzy subsets of the unit interval. Inform. sci. 24, 143-161 (1981) · Zbl 0459.04004
[29] Zadeh, L. A.: Fuzzy sets. Inform. and control 8, 338-353 (1965) · Zbl 0139.24606
[30] Zimmermann, H. J.: Description and optimization of fuzzy systems. Internat. J. General systems 2, No. 4, 209-215 (1976) · Zbl 0338.90055