[1] |
Abou-El-Ata, M. O.; Fergany, H. A.; El-Wakeel, M. F.: Probabilistic multi-item inventory model with varying order cost under two restrictionsa geometric programming approach. Internat. J. Production econom. 83, 223-231 (2003) |

[2] |
Abou-El-Ata, M. O.; Kotb, K. A. M.: Multi-item EOQ inventory model with varying holding cost under two restrictionsa geometric programming approach. Production planning control 8, 608-611 (1997) |

[3] |
Bellman, R. E.; Zadeh, L. A.: Decision-making in a fuzzy environment. Management sci. 17, No. 4, B141-B164 (1970) · Zbl 0224.90032 |

[4] |
Bortolan, G.; Degani, R. A.: A review of some methods for ranking fuzzy subsets. Fuzzy sets and systems 15, 1-19 (1985) · Zbl 0567.90056 |

[5] |
Chen, C. K.: Optimal determination of quality level, selling quantity and purchasing price for intermediate firms. Production planning control 11, No. 7, 706-712 (2000) |

[6] |
Cheng, T. C. E.: An economic production quantity model with demand-dependent unit cost. European J. Oper. res. 40, 252-256 (1989) · Zbl 0665.90017 |

[7] |
Das, K.; Roy, T. K.; Maiti, M.: Multi-item inventory model with quantity dependent inventory costs and demand-dependent unit cost under imprecise objective and restrictionsa geometric programming approach. Production planning control 11, No. 8, 781-788 (2000) |

[8] |
De, S.; Goswami, A.: A replenishment policy for items with finite production rate and fuzzy deterioration rate. Opsearch 38, No. 4, 419-430 (2001) |

[9] |
D. Dubois, H. Prade, A unified view of ranking techniques for fuzzy numbers, Proc. IEEE Internat. Conf. on Fuzzy Systems, Seoul, 1999, pp. 1328 -- 1333. |

[10] |
Duffin, R. J.; Peterson, E. L.; Zener, C.: Geometric programming-theory and application. (1967) · Zbl 0171.17601 |

[11] |
Hadley, G.; Whitin, T. M.: Analysis of inventory systems. (1958) · Zbl 0133.42901 |

[12] |
Hariri, A. M. A.; Abou-El-Ata, M. O.: Multi-item production lot-size inventory model with varying order cost under a restrictiona geometric programming approach. Production planning control 8, 179-182 (1997) |

[13] |
Jung, H.; Klein, C. M.: Optimal inventory policies under decreasing cost functions via geometric programming. European J. Oper. res. 132, 628-642 (2001) · Zbl 1024.90004 |

[14] |
Kaufman, A.; Gupta, M. M.: Fuzzy mathematical models in engineering & management sciences. (1988) |

[15] |
Liou, T. S.; Wang, M. J.: Ranking fuzzy numbers with integral values. Fuzzy sets and systems 50, 247-255 (1992) · Zbl 1229.03043 |

[16] |
Luo, X.; Lee, J. H.; Leung, H.; Jennings, N. R.: Prioritised fuzzy constraint satisfaction problemsaxioms. Instantiation and validation, fuzzy sets and systems 136, 151-188 (2003) · Zbl 1024.68097 |

[17] |
Park, K. S.: Fuzzy set theoretic interpretation of economic order quantity. IEEE trans. Systems man cybernet. 17, No. 6, 1082-1084 (1987) |

[18] |
Raymond, F. E.: Quantity and economic in manufacturer. (1931) |

[19] |
Roy, T. K.; Maiti, M.: A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. European J. Oper. res. 99, 425-432 (1997) · Zbl 0953.90501 |

[20] |
Saade, J. J.; Schwarzlander, H.: Ordering fuzzy sets over the real linean approach based on decision making under uncertainty. Fuzzy sets and systems 50, 237-246 (1992) |

[21] |
Silver, E. A.; Peterson, R.: Decision systems for inventory management and production planning. (1985) |

[22] |
Sommer, G.: Fuzzy inventory scheduling. Applied systems and cybernetics, vol. VI (1981) |

[23] |
Tanaka, H.; Okuda, T.; Asai, K.: On fuzzy mathematical programming. J. cybernet. 3, No. 4, 37-46 (1974) · Zbl 0297.90098 |

[24] |
Tiwari, R. N.; Dharmar, S.; Rao, J. R.: Fuzzy goal programming-an additive model. Fuzzy sets and systems 24, 27-34 (1987) · Zbl 0627.90073 |

[25] |
Wang, X.; Kerre, E.: Resonable properties for the ordering of fuzzy quantities (2 parts). Fuzzy sets and systems 118, 375-406 (2001) |

[26] |
Werners, B.: Interactive multiple objective programming subject to flexible constraints. European J. Oper. res. 31, 342-349 (1987) · Zbl 0636.90085 |

[27] |
Worral, B. M.; Hall, M. A.: The analysis of an inventory control model using posynomial geometric programming. Internat. J. Production res. 20, 657-667 (1982) |

[28] |
Yager, R. R.: A procedure for ordering fuzzy subsets of the unit interval. Inform. sci. 24, 143-161 (1981) · Zbl 0459.04004 |

[29] |
Zadeh, L. A.: Fuzzy sets. Inform. and control 8, 338-353 (1965) · Zbl 0139.24606 |

[30] |
Zimmermann, H. J.: Description and optimization of fuzzy systems. Internat. J. General systems 2, No. 4, 209-215 (1976) · Zbl 0338.90055 |