zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic scheduling subject to machine breakdowns: the preemptive-repeat model with discounted reward and other criteria. (English) Zbl 1075.90035
Summary: We consider the problem of scheduling a set of jobs on a single machine subject to random breakdowns. We focus on the preemptive-repeat model, which addresses the situation where, if a machine breaks down during the processing of a job, the work done on the job prior to the breakdown is lost and the job will have to be started from the beginning again when the machine resumes its work. We allow that (i) the uptimes and downtimes of the machine follow general probability distributions, (ii) the breakdown process of the machine depends upon the job being processed, (iii) the processing times of the jobs are random variables following arbitrary distributions, and (iv) after a breakdown, the processing time of a job may either remain a same but unknown amount, or be resampled according to its probability distribution. We first derive the optimal policy for a class of problems under the criterion to maximize the expected discounted reward earned from completing all jobs. The result is then applied to further obtain the optimal policies for other due date-related criteria. We also discuss a method to compute the moments and probability distributions of job completion times by using their Laplace transforms, which can convert a general stochastic scheduling problem to its deterministic equivalent. The weighted squared flowtime problem and the maintenance checkup and repair problem are analyzed as applications.

MSC:
90B36Scheduling theory, stochastic
60E10Transforms of probability distributions
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
WorldCat.org
Full Text: DOI