HIV dynamics: Modeling, data analysis, and optimal treatment protocols. (English) Zbl 1075.92030

Summary: We present an overview of some concepts and methodologies we believe useful in modeling HIV pathogenesis. After a brief discussion of motivation for and previous efforts in the development of mathematical models for progression of HIV infection and treatment, we discuss mathematical and statistical ideas relevant to Structured Treatment Interruptions (STI). Among these are model development and validation procedures including parameter estimation, data reduction and representation, and optimal control relative to STI. Results from initial attempts in each of these areas by an interdisciplinary team of applied mathematicians, statisticians and clinicians are presented.


92C50 Medical applications (general)
62P10 Applications of statistics to biology and medical sciences; meta analysis
49N90 Applications of optimal control and differential games
92C60 Medical epidemiology
49J15 Existence theories for optimal control problems involving ordinary differential equations
Full Text: DOI


[1] B.M. Adams, H.T. Banks, J.E. Banks, J.D. Stark, Population dynamics models in plant-insect herbivore-pesticide interactions, CRSC Technical Report CRSC-TR03-12, NCSU, Raleigh, March, 2003 (revised August, 2003; Math. Biosci., to appear). · Zbl 1071.92038
[2] Andrews, C.A.; Davies, J.M.; Schwarz, G.R., Adaptive data compression, Proc. IEEE, 55, 267-277, (1967)
[3] Aubry, N.; Holmes, P.; Lumley, J.L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. fluid mech., 192, 115-173, (1988) · Zbl 0643.76066
[4] H.T. Banks, D.M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models, CRSC Technical Report CRSC-TR02-24, NCSU, Raleigh, August, 2002 (J. Math. Biol., to appear). · Zbl 1083.92025
[5] H.T. Banks, D.M. Bortz, S.E. Holte, Incorporation of uncertainty in mathematical modeling of HIV infection dynamics, CRSC Technical Report CRSC-TR01-25, NCSU, Raleigh, September, 2001 (Math. Biosci. 183 (2003) 63-91). · Zbl 1011.92037
[6] H.T. Banks, N.L. Gibson, W.P. Winfree, Electromagnetic crack detection inverse problems using terahertz interrogating signals, CRSC Technical Report CRSC-TR03-40, NCSU, Raleigh, October, 2003.
[7] Berkooz, G.; Holmes, P.; Lumley, J.L.; Mattingly, J.C., Low-dimensional models of coherent structures in turbulence, Phys. rep., 287, 338-384, (1997)
[8] Bonhoeffer, S.; Coffin, J.M.; Nowak, M.A., Human immunodeficiency virus drug therapy and virus load, J. virol., 97, 3275-3278, (1997)
[9] Bonhoeffer, S.; Rembiszewski, M.; Ortiz, G.M.; Nixon, D.F., Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, Aids, 14, 2313-2322, (2000)
[10] Borrow, P.; Lewicki, H.; Hahn, B.; Shaw, G.M.; Oldstone, M.B., Virus-specific CD8+ cytotoxic T-lymphocyte activity asssociated with control of viremia in primary human immunodeficiency virus type 1 infection, J. virol., 68, (1994)
[11] Brandt, M.E.; Chen, B., Feedback control of a biodynamical model of HIV-1, IEEE trans. biomed. eng., 48, 754-759, (2001)
[12] Bucy, R.P., Immune clearance of HIV type 1 replication-active cells: a model of two patterns of steady state HIV infection, Aids res. hum. retr., 15, 223-227, (1999)
[13] Burnham, K.P.; Anderson, D.R., Model selection and multimodel inference: a practical information-theoretic approach, (2002), Springer New York · Zbl 1005.62007
[14] Butler, S.; Kirschner, D.; Lenhart, S., Optimal control of the chemotherapy affecting the infectivity of HIV, (), 557-569 · Zbl 0929.92017
[15] Callaway, D.S.; Perelson, A.S., HIV-1 infection and low steady state viral loads, Bull. math. biol., 64, 29-64, (2001) · Zbl 1334.92227
[16] Dalod, M., Broad, intense anti-human immunodeficiency virus (HIV) ex vivo CD8+ responses in HIV type 1-infected patients: comparison with anti-Epstein-barr virus responses and changes during anti-retroviral therapy, J. virol., 73, 7108-7116, (1999)
[17] Davidian, M.; Giltinan, D.M., Nonlinear models for repeated measurement data, (1995), Chapman & Hall London
[18] Davey, R.T.; Bhat, N.; Yoder, C., HIV-1 and T cell dynamics after interruption of highly active anti-retroviral therapy (HAART) in patients with a history of sustained viral suppression, Proc. natl. acad. sci., 96, 15109-15114, (1999)
[19] Derdeyn, C.A.; Kilby, J.M.; Miralles, G.D.; Li, L.F.; Sfakianos, G.; Saag, M.S.; Hockett, R.D.; Bucy, R.P., Evaluation of distinct blood lymphocyte populations in human immunodeficiency virus type-1-infected subjects in the absence or presence of efffective therapy, J. inf. dis., 180, 1851-1862, (1999)
[20] Eslami, M., Theory of sensitivity in dynamic systems, (1994), Springer Heidelberg
[21] Fister, K.R.; Lenhart, S.; McNally, J.S., Optimizing chemotherapy in an HIV model, Electr. J. differential equations, 32, 1-12, (1998) · Zbl 1068.92503
[22] Fleming, W.H.; Rishel, R.W., Deterministic and stochastic optimal control, (1975), Springer New York · Zbl 0323.49001
[23] Frank, P.M., Introduction to system sensitivity theory, (1978), Academic Press New York · Zbl 0464.93001
[24] Garcia, F.; Plana, M.; Vidal, C., Dynamics of viral load rebound and immunological changes after stopping effective antiretroviral therapy, Aids, 13, F79-F86, (1999)
[25] Gonzalez, R.C.; Wintz, P.A., Digital image processing, (1987), Addison-Wesley Reading, MA
[26] Gray, C.M., Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individual receiving highly active anti-retroviral therapy (HAART), J. immunol., 62, 1780-1788, (1999)
[27] Gunzburger, M.D., Perspectives in flow control and optimization, (2003), SIAM Philadelphia · Zbl 1088.93001
[28] Haslett, P.A.; Nixon, D.F.; Shen, Z., Strong human immunodeficiency virus (HIV)-specific CD4+ T cell responses in a cohort of chronically infected patients are associated with interruptions in anti-HIV chemotherapy, J. inf. dis., 181, 1264-1272, (2000)
[29] Hilai, R.; Rubinstein, J., Recognition of rotated images by invariant karhunen – loève expansion, J. opt. soc. amer. A—opt. image sci. vis., 11, 1610-1618, (1994)
[30] Ho, D.D.; Neumann, A.U.; Perelson, A.S., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126, (1995)
[31] Jolliffe, I.T., Principal component analysis, (1986), Springer New York · Zbl 1011.62064
[32] Joshi, H.R., Optimal control of an HIV immunology model, Optim. contr. appl. math., 23, 199-213, (2002) · Zbl 1072.92509
[33] Kalams, S.A., Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active anti-retroviral therapy, J. virol., 73, 6721-6728, (1999)
[34] Kamien, M.I.; Schwartz, N.L., Dynamic optimization, (1991), North-Holland Amsterdam · Zbl 0709.90001
[35] Kirby, M.; Sirovich, L., Application of the karhunen – loève procedure for the characterization of human faces, IEEE trans. pattern anal. Mach. intell., 12, 103-108, (1990)
[36] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, J. math. biol., 35, 775-792, (1997) · Zbl 0876.92016
[37] Lisziewicz, J.; Lori, F., Structured treatment interruptions in HIV/AIDS therapy, Microbes infect., 4, 207-214, (2002)
[38] Lisziewicz, J.; Rosenberg, E.; Liebermann, J., Control of HIV despite the discontinuation of anti-retroviral therapy, New engl. J. med., 340, 1683-1684, (1999)
[39] Loève, M., Probability theory, (1955), van Nostrand Princeton, NJ · Zbl 0108.14202
[40] Lukes, D.L., Differential equations: classical to controlled, mathematics in science and engineering, (1982), Academic Press New York
[41] Lumley, J.L., The structure of inhomogeneous turbulent flows, (), 166-178
[42] Luzuriaga, K., Dynamics of human immunodeficiency virus type 1 replication in vertically infected infants, J. virol., 73, 362-367, (1999)
[43] Ly, H.V.; Tran, H.T., Modeling and control of physical processes using proper orthogonal decomposition, Math. comp. model., 33, 223-236, (2001) · Zbl 0966.93018
[44] Melvin, A.J., HIV-1 dynamics in children, Aids, 20, 468-473, (1999)
[45] Mittler, J.E.; Sulzer, B.; Neumann, A.U.; Perelson, A.S., Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Math. biosci., 152, 143-163, (1998) · Zbl 0946.92011
[46] Neumann, A.U.; Tubiana, R.; Calvez, V.; Robert, C.; Li, T.S.; Agut, H.; Autran, B., HIV-1 rebound during interruption of highly active anti-retroviral therapy has no deleterious effect on re-initiated treatment, Aids, 13, 677-683, (1999)
[47] Notermans, D.W.; Goudsmit, J.; Danner, S.A., Rate of HIV-1 decline following anti-retroviral therapy is related to viral load at baseline and drug regimen, Aids, 12, 1483-1490, (1998)
[48] Nowak, M.A.; Bangham, C.R., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79, (1996)
[49] Ogg, G.S., Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA, Science, 279, 2103-2106, (1998)
[50] Ogg, G.S., Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination anti-retroviral therapy, J. virol., 73, 797-800, (1999)
[51] Ortiz, G.; Nixon, D.; Trkola, A., HIV-1 specific immune responses in subjects who temporarily contain virus replication after discontinuation of highly active anti-retroviral therapy, J. clin. invest., 104, R13-R18, (1999)
[52] Oxenius, A., Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ lymphocytes, Proc. natl. acad. sci., 97, 3382-3387, (2000)
[53] Papasavvas, E.; Ortiz, G.M.; Gross, R., Enhancement of human immunodeficiency virus type 1-specific CD4 and CD8 T cell responses in chronically infected persons after temporary treatment interruption, J. inf. dis., 182, 766-775, (2000)
[54] Perelson, A.S.; Essunger, A.U.; Cao, P.Y., Decay characteristics of HIV-1 infected compartments during combination therapy, Nature, 387, 188-191, (1997)
[55] Perelson, A.S.; Nelson, P.W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev., 41, 3-44, (1999) · Zbl 1078.92502
[56] Perelson, A.S.; Neumann, A.U.; Markowitz, M., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586, (1996)
[57] Pitcher, C.J.; Quittner, C.; Peterson, D.M., HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression, Nature med., 5, 518-525, (1999)
[58] Rosenberg, E.S.; Altfeld, M.; Poon, S.H., Immune control of HIV-1 after early treatment of acute infection, Nature, 407, 523-526, (2000)
[59] L. Ruiz, Martünez-Picado, J. Romeu, et al., Structured treatment interruption in chronically HIV-1 infected patients after long-term viral suppression, AIDS 14 (2000) 397-403.
[60] Schmitz, J.E., Control of viremia in Simian immunodeficiency virus infection by CD8+ lymphocytes, Science, 283, 857-860, (1999)
[61] Sirovich, L., Turbulence and the dynamics of coherent structures, part II: symmetries and transformations, Quart. appl. math., XLV, 573-582, (1987)
[62] Speigel, H.M., Changes in frequency of HIV-1 specific cytotoxic T cell precursors and circulating effectors after combination anti-retroviral therapy in children, J. inf. dis., 180, 359-368, (1999)
[63] Tsiatis, A.A.; DeGruttola, V.; Wulfsohn, M.S., Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 counts in patients with AIDS, J. amer. stat. assoc., 90, 27-37, (1995) · Zbl 0818.62102
[64] Vermeulen, P.J.E.; Casasent, D.P., Karhunen – loève techniques for optimal processing of time-sequential imagery, Opt. eng., 30, 415-423, (1991)
[65] S. Watanabe, Karhunen-Loève expansion and factor analysis theoretical remarks and applications, in: Proceedings of the 4th Prague Conf. Inform. Theory, 1965.
[66] Wei, X.; Ghosh, S.K.; Taylor, M.E., Viral dynamics of HIV-1 infection, Nature, 373, 117-122, (1995)
[67] Wein, L.M.; Zenios, S.A.; Nowak, M.A., Dynamic multidrug therapies for HIV: a control theoretic approach, J. theor. biol., 185, 15-29, (1997)
[68] Wodarz, D.; Nowak, M.A., Specific therapy regimes could lead to long-term immunological control of HIV, Proc. natl. acad. sci., 96, 14464-14469, (1999)
[69] Wu, H.; Ding, A.A., Population HIV-1 dynamics in vivo: applicable models and inferential tools for virological data from AIDS clinical trials, Biometrics, 55, 410-418, (1999) · Zbl 1059.62735
[70] Wu, H., Characterization of viral dynamics in human immunodeficiency virus type 1-infected patients treated with combination anti-retroviral therapy: relationships to host factors, cellular restoration, and virologic end points, J. inf. dis., 179, 799-807, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.