[1] |
Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM. · Zbl 0816.93004 |

[2] |
Els’golts’, L. E., & Norkin, S. B. (1973). Introduction to the theory and application of differential equations with deviating arguments. Mathematics in Science and Engineering, Vol. 105, New York: Academic Press. |

[3] |
Fridman, E.: New Lyapunov-Krasovskiĭ functionals for stability of linear retarded and neutral type systems. Systems & control letters 43, 309-319 (2001) · Zbl 0974.93028 |

[4] |
Fridman, E.; Shaked, U.: A descriptor system approach to H$\infty $control of linear time-delay systems. IEEE transaction on automatic control 47, 253-270 (2002) · Zbl 1006.93021 |

[5] |
Gahinet, P., Nemirovski, A., Laub, A. J., & Chilali, M. (1995). LMI control toolbox: For use with MATLAB. Math Works: Natick, MA. |

[6] |
Goubet-Batholomeus, A.; Dambrine, M.; Richard, J. P.: Stability of perturbed systems with time-varying delays. Systems control letters 31, 155-163 (1997) · Zbl 0901.93047 |

[7] |
Gu, K. (2000). An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE conference on decision and control, Sydney, Australia, December 2000 (pp. 2805-2810). |

[8] |
Gu, K.; Niculescu, S. -I.: Further remarks on additional dynamics in various model transformations of linear delay systems. IEEE transactions on automatic control 46, 497-500 (2001) · Zbl 1056.93511 |

[9] |
Hale, J. K.; Lunel, S. M.: Introduction to functional differential equations. (1993) · Zbl 0787.34002 |

[10] |
Han, Q. -L.: Robust stability of uncertain delay-differential systems of neutral type. Automatica 38, 719-723 (2002) · Zbl 1020.93016 |

[11] |
Hu, G. Di.; Hu, G. Da.: Some simple stability criteria of neutral delay-differential systems. Applied mathematics and computation 80, 257-271 (1996) · Zbl 0878.34063 |

[12] |
Kim, J. -H.: Delay and its time-derivative dependent robust stability of timedelayed linear systems with uncertainty. IEEE transactions on automatic control 46, 789-792 (2001) · Zbl 1008.93056 |

[13] |
Kolmanovskii, V. B.; Richard, J. -P.: Stability of some linear systems with delays. IEEE transactions on automatic control 44, 984-989 (1999) · Zbl 0964.34065 |

[14] |
Lien, C. -H.; Yu, K. W.; Hsieh, J. G.: Stability conditions for a class of neutral systems with multiple time delays. Journal of mathematical analysis and application 245, 20-27 (2000) · Zbl 0973.34066 |

[15] |
Niculescu, S. -I. (2000). Further remarks on delay-dependent stability of linear neutral systems. Proceedings of MTNS 2000, Perpigan, France. |

[16] |
Slemrod, M.; Infante, E. F.: Asymptotic stability criteria for linear systems of differential equations of neutral type and their discrete analogues. Journal of mathematical analysis and application 38, 399-415 (1972) · Zbl 0202.10301 |

[17] |
Takaba, K.; Morihira, N.; Katayama, T.: A generalized Lyapunov theorem for descriptor systems. Systems & control letters 24, 49-51 (1995) · Zbl 0883.93035 |

[18] |
Verriest, E. -I., & Niculescu, S. -I. (1997). Delay-independent stability of linear neutral systems: A Riccati equation approach. In L. Dugard & E.I. Verriest (Eds.), Stability and control of time-delay systems, LNCIS, Vol. 228, London: Springer. (pp. 92-100). · Zbl 0923.93049 |

[19] |
Xie, L.: Output feedback H$\infty $control of systems with parameter uncertainty. International journal control 63, 741-750 (1996) · Zbl 0841.93014 |