Borodin, O. V.; Glebov, A. N.; Ivanova, A. O.; Neustroeva, T. K.; Tashkinov, V. A. Sufficient conditions for planar graphs to be 2-distance (\(\Delta+1\))-colourable. (Russian. English summary) Zbl 1076.05032 Sib. Èlektron. Mat. Izv. 1, 129-141 (2004). Summary: A trivial lower bound for the 2-distance chromatic number \(\chi_2(G)\) of any graph \(G\) with maximum degree \(\Delta\) is \(\Delta+1\). We prove that if \(G\) is planar and its girth is at least 7, then \(\chi_2(G)=\Delta+1\) whenever \(\Delta\geq 30\). On the other hand, we construct planar graphs with girth 5 and 6 that have arbitrarily large \(\Delta\) and \(\chi_2(G) > \Delta+1\). Cited in 21 Documents MSC: 05C15 Coloring of graphs and hypergraphs Keywords:coloring; diameter; chromatic number PDF BibTeX XML Cite \textit{O. V. Borodin} et al., Sib. Èlektron. Mat. Izv. 1, 129--141 (2004; Zbl 1076.05032) Full Text: EMIS EuDML