zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
When is a smash product semiprime? A partial answer. (English) Zbl 1076.16038
It is a famous open question whether the smash product of a semisimple Hopf algebra and a semiprime module algebra is semiprime. The aim of this paper is to answer this question partially. The main result is that the smash product of a commutative semiprime module algebra over a semisimple cosemisimple Hopf algebra is semiprime. On the other hand, it is proved that for a semiprime Goldie PI $H$-module algebra $A$ with central invariants, $A\#H$ is semiprime if and only if the $H$-action can be extended to the classical ring of quotients of $A$, and if and only if every non-trivial $H$-stable ideal of $A$ contains a non-zero $H$-invariant element. In the last section, it is shown that the class of strongly semisimple Hopf algebras is closed under taking Drinfeld twists. Applying some recent results of {\it P. Etingof} and {\it S. Gelaki} [see Int. Math. Res. Not. 1998, No. 16, 851-861 (1998; Zbl 0918.16027); ibid. 2000, No. 5, 223-234 (2000; Zbl 0957.16029)], it is concluded that every semisimple cosemisimple triangular Hopf algebra over a field is strongly semisimple.

MSC:
16W30Hopf algebras (associative rings and algebras) (MSC2000)
16S40Smash products of general Hopf actions
WorldCat.org
Full Text: DOI arXiv
References:
[1] Bahturin, Y. A.; Linchenko, V.: Identities of algebras with actions of Hopf algebras. J. algebra 202, 634-654 (1998) · Zbl 0912.16009
[2] Brown, K.; Goodearl, K.: Lectures on algebraic quantum groups. Advanced courses in mathematics (2002) · Zbl 1027.17010
[3] Cohen, M.: Hopf algebras acting on semiprime algebras. Contemp. math. 43, 49-61 (1985) · Zbl 0568.16009
[4] Cohen, M.; Fishman, D.: Hopf algebra actions. J. algebra 100, 363-379 (1986) · Zbl 0591.16005
[5] Cohen, M.; Fishman, D.: Semisimple extensions and elements of trace 1. J. algebra 100, 363-379 (1992)
[6] Cohen, M.; Montgomery, S.: Group-graded rings, smash products, and group actions. Trans. amer. Math. soc. 282, 237-258 (1984) · Zbl 0533.16001
[7] Cohen, M.; Westreich, S.: Central invariants of H-module algebras. Comm. algebra 21, No. 8, 2859-2883 (1993) · Zbl 0792.16035
[8] Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Grad texts in math. 150 (1995) · Zbl 0819.13001
[9] Etingof, P.; Gelaki, S.: On finite dimensional semisimple and cosemisimple Hopf algebras in positive characteristic. Int. math. Res. notices 16, 851-861 (1998) · Zbl 0918.16027
[10] Etingof, P.; Gelaki, S.: The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field. Int. math. Res. notices 5, 223-234 (2000) · Zbl 0957.16029
[11] Fisher, J. W.; Montgomery, S.: Semiprime skew group rings. J. algebra 52, 241-247 (1978) · Zbl 0373.16004
[12] Hirata, K.; Sugano, K.: On semisimple extensions and separable extensions over non commutative rings. J. math. Soc. Japan 18, No. 4, 360-373 (1966) · Zbl 0178.36802
[13] Lam, T. Y.: Lectures on modules and rings. Grad texts in math. 189 (1998)
[14] Majid, S.: Foundations of quantum group theory. (1995) · Zbl 0857.17009
[15] Majid, S.: Quasi-\ast-structure on q-PoincarĂ© algebras. J. geom. Phys. 22, No. 1, 14-58 (1997) · Zbl 0882.16025
[16] Mcconnell, J. C.; Robson, J. C.: Noncommutative noetherian rings. Grad stud. In math. 30 (2001) · Zbl 0980.16019
[17] Montgomery, S.: Hopf algebras and their actions on rings. CBMS reg. Conf. ser. Math. 82 (1992)
[18] Montgomery, S.; Schneider, H. -J.: Prime ideals in Hopf Galois extensions. Israel J. Math. 112, 187-235 (1999) · Zbl 0948.16028
[19] Pareigis, B.: When Hopf algebras are Frobenius algebras. J. algebra 18, 588-596 (1971) · Zbl 0225.16008
[20] Pareigis, B.: Endliche Hopf-algebren. (1973)
[21] Rowen, L. H.: Polynomial identities in ring theory. (1980) · Zbl 0461.16001
[22] Rumynin, D.: Maximal quotient algebra of a Hopf-module algebra. Algebra logic 32, No. 5, 300-308 (1993) · Zbl 0822.16027
[23] Wisbauer, R.: Foundations of module and ring theory. (1991) · Zbl 0746.16001
[24] Wisbauer, R.: Modules and algebras: bimodule structure and group actions on algebras. Pitman monogr. Surv. pure appl. Math. 81 (1996) · Zbl 0861.16001
[25] Zelmanowitz, J.: Correspondence of closed submodules. Proc. amer. Math. soc. 124, No. 10, 2955-2960 (1996) · Zbl 0866.16020
[26] Zhu, S.: Integrality of module algebras over its invariants. J. algebra 180, 187-205 (1996) · Zbl 0845.16039