Hakkaev, Sevdzhan; Kirchev, Kiril Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation. (English) Zbl 1076.35098 Commun. Partial Differ. Equations 30, No. 5-6, 761-781 (2005). The authors study the equation \[ u_x + (a(u))_x -u_{xxt} =\left(b'(u)\frac{u^2_x}{2} + b(u)u_{xx}\right)_x \tag{1} \] which is a generalization of the famous Camassa-Holm equation. Applying the method of the pseudoparabolic regularization for \(b(u) = u^p\) and \(a(u) =2ku +\frac{p+2}{2}u^{p+1}\), the authors establish the local well-posedness of the Cauchy problem for (1) in the Sobolev space \(H^s\) with any \(s >\frac{3}{2}\). The stability and instability problem of a solitary wave solution of (1) are considered. Reviewer: Vasily A. Chernecky (Odessa) Cited in 8 ReviewsCited in 46 Documents MSC: 35Q35 PDEs in connection with fluid mechanics 37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems 35G25 Initial value problems for nonlinear higher-order PDEs 76B25 Solitary waves for incompressible inviscid fluids 35B35 Stability in context of PDEs Keywords:Camassa-Holm equation; initial value problem; existence; pseudoparabolic regularization; stability; stability and instability PDF BibTeX XML Cite \textit{S. Hakkaev} and \textit{K. Kirchev}, Commun. Partial Differ. Equations 30, No. 5--6, 761--781 (2005; Zbl 1076.35098) Full Text: DOI References: [1] Bona J., Phil. Trans. Roy. Soc. London Ser. A 278 pp 555– (1975) · Zbl 0306.35027 [2] Bona J., Proc. Roy. Soc. London Ser. A 411 pp 395– (1987) · Zbl 0648.76005 [3] Camassa R., Phys. Rev. Lett. 71 pp 1661– (1993) · Zbl 0972.35521 [4] Camassa R., Advances in Applied Mechanics. 31 pp 1– (1994) [5] Constantin A., Commun. Pure Appl. Math. 53 pp 603– (2000) · Zbl 1049.35149 [6] Constantin A., J. Nonlinear Sci. 12 pp 415– (2002) · Zbl 1022.35053 [7] Dunford N., Linear Operators 2 (1988) [8] Fuchssteiner B., Physica D 4 pp 47– (1981) · Zbl 1194.37114 [9] Grillakis M., J. Funct. Anal. 74 pp 160– (1987) · Zbl 0656.35122 [10] Kato T., Commun. Pure Appl. Math. 41 pp 981– (1988) · Zbl 0671.35066 [11] Li Y., J. Diff. Eqs. 162 pp 27– (2000) · Zbl 0958.35119 [12] Souganidis P., Proc. Roy. Soc. Edinburgh Sect. A 114 pp 195– (1990) · Zbl 0713.35108 [13] Zhidkov E., Sibirsk Mat. Zh. 25 pp 30– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.