zbMATH — the first resource for mathematics

Quantile functions for multivariate analysis: approaches and applications. (English) Zbl 1076.62054
Summary: Despite the absence of a natural ordering of Euclidean spaces for dimensions greater than one, the effort to define vector-valued quantile functions for multivariate distributions has generated several approaches. To support greater discrimination in comparing, selecting and using such functions, we introduce relevant criteria, including a notion of “median-oriented quantile function”. On this basis we compare recent quantile approaches and several multivariate versions of trimmed mean and interquartile range. We also discuss a univariate “generalized quantile” approach that enables particular features of multivariate distributions, for example scale and kurtosis, to be studied by two-dimensional plots. Methods based on statistical depth functions are found to be especially attractive for quantile-based multivariate inference.

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62E10 Characterization and structure theory of statistical distributions
Full Text: DOI
[1] DOI: 10.1016/0167-7152(92)90043-5 · Zbl 0743.62040 · doi:10.1016/0167-7152(92)90043-5
[2] DOI: 10.1016/S0167-9473(98)00093-0 · Zbl 1061.62532 · doi:10.1016/S0167-9473(98)00093-0
[3] BROWN B. M., Journal of the Royal Statistical Society, Series B 49 pp 301– (1987)
[4] BROWN B. M., Journal of the Royal Statistical Society, Series B 51 pp 117– (1989)
[5] CHAUDHURI P., Journal of the American Statistical Association 91 pp 862– (1996)
[6] DEHEUVELS P., Journal of Multivariate Analysis 24 pp 155– (1988)
[7] DI BUCCHIANICO A., Annals of Statistics 29 (2001)
[8] DONOHO D. L., Annals of Statistics 20 pp 1803– (1992)
[9] DOI: 10.1016/0167-7152(92)90075-G · Zbl 0758.60030 · doi:10.1016/0167-7152(92)90075-G
[10] EINMAHL J. H. J., Annals of Statistics 20 pp 1062– (1992)
[11] 11T. S. FERGUSON(1967 ),Mathematical statistics: a decision theoretic approach, Academic Press, New York.
[12] DOI: 10.1214/aos/1031833661 · Zbl 0873.62053 · doi:10.1214/aos/1031833661
[13] 13T. P. HETTMANSPERGER, and J. W. MCKEAN(1998 ),Robust nonparametric statistical methods, Arnold, London. · Zbl 0887.62056
[14] 14T. P. HETTMANSPERGER, J. NYBLOM, and H. OJA(1992 ), On multivariate notions of sign and rank , in: Y. DODGE(ed.),L1-Statistical analysis and related methods, North-Holland, Amsterdam, 267-278.
[15] 15J. H. B. KEMPERMAN(1987 ), The median of a finite measure on a Banach space , in: Y. DODGE(ed.),Statistical data analysis based on the L1-norm and related methods, North-Holland, Amsterdam, 217-230.
[16] KOENKER R., Journal of the American Statistical Association 82 pp 851– (1978)
[17] 17V. KOLTCHINSKII, and R. M. DUDLEY(1996 ), On spatial quantiles , unpublished manuscript.
[18] DOI: 10.1214/aos/1031833659 · Zbl 0878.62037 · doi:10.1214/aos/1031833659
[19] DOI: 10.1214/aos/1018031259 · doi:10.1214/aos/1018031259
[20] LORENZ M. O., Publication of the American Statistical Association 9 pp 209– (1905)
[21] 21J.C. MASSE(2000 ), Asymptotics for the Tukey depth process . Application to a multivariate trimmed mean, Preprint.
[22] 22J.C. MASSE(2001 ), Asymptotics for the Tukey depth-based trimmed means , Preprint.
[23] DOI: 10.1006/jmva.1994.1002 · Zbl 0790.60024 · doi:10.1006/jmva.1994.1002
[24] 24N. MUSHKUDIANI(2000 ),Statistical applications of generalized quantiles: nonparametric tolerance regions and P-P plots, Eindhoven University of Technology, Eindhoven. · Zbl 0995.62050
[25] 25N. MUSHKUDIANI(2001 ), Small nonparametric tolerance regions for directional data , Journal of Statistical Planning and Inference, to appear.
[26] DOI: 10.1016/0304-4149(92)90032-L · Zbl 0763.62007 · doi:10.1016/0304-4149(92)90032-L
[27] DOI: 10.1016/0167-7152(83)90054-8 · Zbl 0517.62051 · doi:10.1016/0167-7152(83)90054-8
[28] DOI: 10.1214/aos/1017938922 · Zbl 0961.62041 · doi:10.1214/aos/1017938922
[29] 29R. SERFLING(2001 ), Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis , Journal of Multivariate Analysis, in press.
[30] SMALL C. G., Canadian Journal of Statistics 15 pp 31– (1987)
[31] SMALL C. G., International Statistical Review 58 pp 263– (1990)
[32] 32Y. ZUO, H. CUI, and X. HE(2001 ), On the Stahel-Donoho estimator and depth weighted means of multivariate data , Preprint. · Zbl 1105.62349
[33] ZUO Y., Annals of Statistics 28 pp 461– (2000)
[34] ZUO Y., Annals of Statistics 28 pp 483– (2000)
[35] DOI: 10.1006/jmva.1999.1894 · doi:10.1006/jmva.1999.1894
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.