zbMATH — the first resource for mathematics

Multi-scale modeling of the follicle selection process in the ovary. (English) Zbl 1076.92017
Summary: The biological meaning of follicular development is to free fertilizable oocytes at the time of ovulation. The ovulation rate results from an FSH-dependent follicle selection process. We designed a multi-scale model of follicular development, where selection arises from the endocrine feedback between the ovaries and pituitary gland and appeals to control theory concepts. Each ovarian follicle is described through a 2D density function giving an age and maturity-structured description of its cell population. The control intervenes in the velocity, gain and loss terms of the conservation law ruling the changes in the density. The model accounts for the changes in the total cell number, growth fraction and global maturity of both ovulatory and degenerating follicles for various intensities of the selection rate. The different selection process outputs (mono- or poly-ovulation, anovulation) predicted by the model are consistent with physiological knowledge regarding vascularization, pituitary sensitivity to ovarian feedback and treatment with exogenous FSH.

92C30 Physiology (general)
93C95 Application models in control theory
92C50 Medical applications (general)
92C37 Cell biology
Full Text: DOI
[1] Monniaux, D.; Huet, C.; Besnard, N.; Clément, F.; Bosc, M.; Pisselet, C.; Monget, P.; Mariana, J.C., Follicular growth and Ovarian dynamics in mammals, J. reprod. fert., 51, 3, (1997)
[2] Greenwald, G.S.; Roy, S.K., Follicular development and its control, (), 629
[3] Richards, J.S., Maturation of ovarian follicles: actions and interactions of pituitary and Ovarian hormones on follicular cell differentiation, Physiol. rev., 15, 51, (1980)
[4] Ginther, O.J.; Wiltbank, M.C.; Fricke, P.M.; Gibbons, J.R.; Kot, K., Selection of the dominant follicle in cattle, Biol. reprod., 55, 1187, (1996)
[5] Campbell, B.K.; Dobson, H.; Baird, D.T.; Scaramuzzi, R.J., Examination of the relative role of FSH and LH in the mechanism of ovulatory follicle selection in sheep, J. reprod. fertil., 117, 355, (1999)
[6] Zeleznik, A.J., The physiology of follicle selection, Reprod. biol. endocrinol., 16, 31, (2004)
[7] Clément, F.; Gruet, M.-A.; Monget, P.; Terqui, M.; Jolivet, E.; Monniaux, D., Growth kinetics of the granulosa cell population in Ovarian follicles: an approach by mathematical modelling, Cell prolif., 30, 255, (1997)
[8] Clément, F., Optimal control of the cell dynamics in the granulosa of ovulatory follicles, Math. biosci., 152, 123, (1998) · Zbl 0930.92007
[9] Clément, F.; Monniaux, D.; Stark, J.; Hardy, K.; Thalabard, J.-C.; Franks, S.; Claude, D., Mathematical model of FSH-induced camp production in Ovarian follicles, Am. J. physiol. (endocrinol. metab.), 281, E35, (2001)
[10] Lacker, H.M.; Akin, E., How do the ovaries count?, Math. biosci., 90, 305, (1988) · Zbl 0671.92006
[11] Chavez-Ross, A.; Franks, S.; Mason, H.D.; Hardy, K.; Stark, J., Modelling the control of ovulation and polycystic ovary syndrome, J. math biol., 36, 95, (1997) · Zbl 0895.92016
[12] Thalabard, J.-C.; Thomas, G.; Methivier, M., The emergence of the dominant Ovarian follicle in primates: a random driven event?, (), 387
[13] Ivanchuk, S.M.; Rutka, J.T., The cell cycle: accelerators, brakes, and checkpoints, Neurosurgery, 54, 692, (2003)
[14] Monniaux, D., Short-term effects of FSH in vitro on granulosa cells of individual sheep follicles, J. reprod. fert., 79, 505, (1987)
[15] Blondin, P.; Dufour, M.; Sirard, M.-A., Analysis of atresia in bovine follicles using different methods: flow cytometry, enzyme-linked immunosorbent assay, and classic histology, Biol. reprod., 54, 631, (1996)
[16] Mc Natty, K.P.; Lun, S.; Hudson, N.L.; Forbes, S., Effects of follicle stimulating hormone, cholera toxin, pertussis toxin and forskolin on adenosine cyclic 3′,5′-monophosphate output by granulosa cells from booroola ewes with or without the F gene, J. reprod. fertil., 89, 553, (1990)
[17] Conti, M., Specificity of the cyclic adenosine 3′,5′-monophosphate signal in granulosa cell function, Biol. reprod., 67, 1653, (2002)
[18] Rubinow, S.I., A maturity-time representation for cell populations, Biophys. J., 8, 1055, (1968)
[19] Henderson, K.M.; McNatty, K.P.; O’Keeffe, L.E.; Lun, S.; Heath, D.A.; Prisk, M.D., Differences in gonadotrophin-stimulated cyclic AMP production by granulosa cells from booroola×merino ewes which were homozygous, heterozygous or non-carriers of a fecundity gene influencing their ovulation rate, J. reprod. fert., 81, 395, (1987)
[20] Mann, G.E.; McNeilly, A.S.; Baird, D.T., Hormone production in vivo and in vitro from follicles at different stages of the oestrous cycle in the sheep, J. endocrinol., 132, 225, (1992)
[21] Mann, G.E.; Campbell, B.K.; McNeilly, A.S.; Baird, D.T., The role of inhibin and oestradiol in the control of FSH secretion in the sheep, J. endocrinol., 133, 381, (1992)
[22] McNatty, K.P.; Gibb, M.; Dobson, D.; Thurley, D.C.; Findlay, J.K., Changes in the concentration of gonadotropic and steroidal hormones in the antral fluid of Ovarian follicle throughout the oestrous cycle of the sheep, Aust. J. biol. sci., 34, 67, (1981)
[23] Rao, M.C.; Midgley, A.R.; Richards, J.S., Hormonal regulation of Ovarian cellular proliferation, Cell, 14, 71, (1978)
[24] Robker, R.L.; Richards, J.S., Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27kip1, Mol. endocrinol., 12, 924, (1998)
[25] Cox, D.R.; Oakes, D., Analysis of survival data, (1984), Chapman and Hall London
[26] Peluso, J.J.; Pappalardo, A.; White, B.A., Control of rat cell mitosis by phorbol ester-, cyclic AMP- and estradiol-17-β-dependent pathways, Biol. reprod., 49, 416, (1993)
[27] Graña, X.; Reddy, E.P., Control of Mammalian cell cycle: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor gene and cyclin-dependent kinase inhibitors (CKIs), Oncogene, 11, 2, 211, (1995)
[28] Van Wezel, I.L.; Dharmarajan, A.M.; Lavranos, T.C.; Rodgers, R.J., Evidence for alternative pathways of granulosa cell death in healthy and slightly atretic bovine antral follicles, Endocrinology, 140, 2602, (1999)
[29] Chen, S.; Liu, X.; Segaloff, D.L., A novel cyclic adenosine 3′,5′-monophosphate-responsive element involved in the transcriptional regulation of the lutropin receptor gene in granulosa cells, Mol. endocrinol., 14, 1498, (2000)
[30] Evans, N.P.; Dahl, G.E.; Padmanabhan, V.; Thrun, L.A.; Karsch, F.J., Estradiol requirements for induction and maintenance of the gonadotropin-releasing hormone surge: implications for neuroendocrine processing of the estradiol signal, Endocrinology, 138, 5408, (1997)
[31] Scaramuzzi, R.J.; Adams, N.R.; Baird, D.T.; Campbell, B.K.; Downing, J.A.; Findlay, J.K.; Henderson, K.M.; Martin, G.B.; McNatty, K.P.; McNeilly, A.S.; Tsonis, C.G., A model for follicle selection and the determination of ovulation rate in the ewe, Reprod. fertil. dev., 5, 459, (1993)
[32] Leveque, R.J., Finite volume methods for hyperbolic problems, (2002), Cambridge University · Zbl 1010.65040
[33] Montgomery, G.W.; Galloway, S.M.; Davis, G.H.; McNatty, K.P., Genes controlling ovulation rate in sheep, Reproduction, 121, 843, (2001)
[34] Pisselet, C.; Clément, F.; Monniaux, D., Fraction of proliferating cells in granulosa during terminal follicular development in high and low prolific sheep breeds, Reprod. nutr. dev., 40, 295, (2000)
[35] Tsonis, C.G.; Carson, R.S.; Findlay, J.K., Relationships between aromatase activity, follicular fluid oestradiol-17β and testosterone concentrations, and diameter and atresia of individual ovine follicles, J. reprod. fert., 72, 153, (1984)
[36] Ginther, O.J.; Kot, K.; Wiltbank, M.C., Associations between emergence of follicular waves and fluctuations in FSH concentrations during the estrous cycle in ewes, Theriogenology, 43, 689, (1994)
[37] Kidder, G.M.; Mhawi, A.A., Gap junctions and Ovarian folliculogenesis, Reproduction, 163, 613, (2002)
[38] Rodgers, R.J.; Irving-Rodgers, H.F.; Russell, D.L., Extracellular matrix of the developing Ovarian follicle, Reproduction, 126, 415, (2003)
[39] Monget, P.; Fabre, S.; Mulsant, P.; Lecerf, F.; Elsen, J.-M.; Mazerbourg, S.; Pisselet, C.; Monniaux, D., Regulation of Ovarian folliculogenesis by IGF and BMP system in domestic animals, Domest. anim. endocrinol., 23, 139, (2002)
[40] Plendl, J., Angiogenesis and vascular regression in the ovary, Anat. histol. embryol., 29, 257, (2000)
[41] Land, R.B., The sensitivity of the ovulation rate of finnish landrace and blackface ewes to exogenous oestrogen, J. reprod. fertil., 48, 217, (1976)
[42] Baird, D.T.; Campbell, B.K., Follicle selection in sheep with breed differences in ovulation rate, Mol. cell. endocrinol., 145, 89, (1998)
[43] Cohen, J., A short review of Ovarian stimulation in assisted reproductive techniques, Reprod. biomed. online, 6, 361, (2003)
[44] Kanitz, W.; Becker, F.; Schneider, F.; Kanitz, E.; Leiding, C.; Nohner, H.P.; Pohland, R., Superovulation in cattle: practical aspects of gonadotropin treatment and insemination, Reprod. nutr. dev., 42, 587, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.