×

A solution for systems of linear fuzzy equations in spite of the non-existence of a field of fuzzy numbers. (English) Zbl 1077.03033

It is well known that the fuzzy numbers, if combined with the usual fuzzy arithmetic, do not form a field due to the fact that the concept of inverse of a fuzzy number does not exist. Despite the lack of inverses, the authors propose a method to find an approximate solution of a system of linear fuzzy equations, making also a comparison with a method of J. J. Buckley and Y. Qu [Fuzzy Sets Syst. 43, No. 1, 33–43 (1991; Zbl 0741.65023)].

MSC:

03E72 Theory of fuzzy sets, etc.
15A06 Linear equations (linear algebraic aspects)
65F05 Direct numerical methods for linear systems and matrix inversion

Citations:

Zbl 0741.65023
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/0165-0114(91)90019-M · Zbl 0741.65023
[2] DOI: 10.1016/0165-0114(79)90005-8 · Zbl 0412.03035
[3] Dubois D., Fuzzy sets and systems: theory and applications (1980) · Zbl 0444.94049
[4] D. Dubois and H. Prade, Analysis of fuzzy Information I, ed. J. C. Bezdek (CRC Press, Boca Raton, 1987) pp. 3–39.
[5] Kaufmann A., Introduction to Fuzzy Arithmetic (1985) · Zbl 0588.94023
[6] Kerre E. E., Fuzzy Sets and Approtimate Reasoning (1999)
[7] DOI: 10.1016/S0165-0114(97)00138-3 · Zbl 0920.04007
[8] DOI: 10.1016/S0165-0114(97)00337-0 · Zbl 0962.93057
[9] DOI: 10.1016/S0165-0114(97)00310-2 · Zbl 0937.03059
[10] M. Mizumoto and K. Tanaka, Advances in Fuzzy Set Theory and Applications, eds. M. M. Gupta, R. K. Ragade and R. R. Yager (North-Holland, Amsterdam, 1979) pp. 153–164.
[11] Moore R., Interval Arithmetic (1966)
[12] DOI: 10.1016/0022-247X(78)90045-8 · Zbl 0377.04004
[13] DOI: 10.1016/0165-0114(80)90065-2 · Zbl 0433.03033
[14] DOI: 10.1016/0020-0255(75)90036-5 · Zbl 0397.68071
[15] DOI: 10.1016/0020-0255(75)90046-8 · Zbl 0404.68074
[16] DOI: 10.1016/0020-0255(75)90017-1 · Zbl 0404.68075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.